1
|
Galvao J, Iwao K, Apara A, Wang Y, Ashouri M, Shah TN, Blackmore M, Kunzevitzky NJ, Moore DL, Goldberg JL. The Krüppel-Like Factor Gene Target Dusp14 Regulates Axon Growth and Regeneration. Invest Ophthalmol Vis Sci 2019; 59:2736-2747. [PMID: 29860460 PMCID: PMC5983061 DOI: 10.1167/iovs.17-23319] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Adult central nervous system (CNS) neurons are unable to regenerate their axons after injury. Krüppel-like transcription factor (KLF) family members regulate intrinsic axon growth ability in vitro and in vivo, but mechanisms downstream of these transcription factors are not known. Methods Purified retinal ganglion cells (RGCs) were transduced to express exogenous KLF9, KLF16, KLF7, or KLF11; microarray analysis was used to identify downstream genes, which were screened for effects on axon growth. Dual-specificity phosphatase 14 (Dusp14) was further studied using genetic (siRNA, shRNA) and pharmacologic (PTP inhibitor IV) manipulation to assess effects on neurite length in vitro and survival and regeneration in vivo after optic nerve crush in rats and mice. Results By screening genes regulated by KLFs in RGCs, we identified Dusp14 as a critical gene target limiting axon growth and regeneration downstream of KLF9's ability to suppress axon growth in RGCs. The KLF9-Dusp14 pathway inhibited activation of mitogen-activated protein kinases normally critical to neurotrophic signaling of RGC survival and axon elongation. Decreasing Dusp14 expression or disrupting its function in RGCs increased axon growth in vitro and promoted survival and optic nerve regeneration after optic nerve injury in vivo. Conclusions These results link intrinsic and extrinsic regulators of axon growth and suggest modulation of the KLF9-Dusp14 pathway as a potential approach to improve regeneration in the adult CNS after injury.
Collapse
Affiliation(s)
- Joana Galvao
- Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Shiley Eye Center, University of California San Diego, La Jolla, California, United States
| | - Keiichiro Iwao
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Akintomide Apara
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Yan Wang
- Shiley Eye Center, University of California San Diego, La Jolla, California, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Masoumeh Ashouri
- Shiley Eye Center, University of California San Diego, La Jolla, California, United States
| | - Tejas Nimish Shah
- Shiley Eye Center, University of California San Diego, La Jolla, California, United States
| | - Murray Blackmore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Noelia J Kunzevitzky
- Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Shiley Eye Center, University of California San Diego, La Jolla, California, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States.,Center for Computational Science, University of Miami, Miami, Florida, United States
| | - Darcie L Moore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Jeffrey L Goldberg
- Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Shiley Eye Center, University of California San Diego, La Jolla, California, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
2
|
Hisamoto N, Nagamori Y, Shimizu T, Pastuhov SI, Matsumoto K. The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK-JNK Signaling Pathway in Axon Regeneration. PLoS Genet 2016; 12:e1006475. [PMID: 27984580 PMCID: PMC5161311 DOI: 10.1371/journal.pgen.1006475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. However, the signaling pathways that orchestrate axon regeneration are not well understood. In Caenorhabditis elegans, initiation of axon regeneration is positively regulated by SVH-2 Met-like growth factor receptor tyrosine kinase (RTK) signaling through the JNK MAPK pathway. Here we show that SVH-4/DDR-2, an RTK containing a discoidin domain that is activated by collagen, and EMB-9 collagen type IV regulate the regeneration of neurons following axon injury. The scaffold protein SHC-1 interacts with both DDR-2 and SVH-2. Furthermore, we demonstrate that overexpression of svh-2 and shc-1 suppresses the delay in axon regeneration observed in ddr-2 mutants, suggesting that DDR-2 functions upstream of SVH-2 and SHC-1. These results suggest that DDR-2 modulates the SVH-2–JNK pathway via SHC-1. We thus identify two different RTK signaling networks that play coordinated roles in the regulation of axonal regeneration. An axon’s ability to regenerate after injury is governed by cell-intrinsic regeneration pathways. The C. elegans JNK MAP kinase pathway is required for the regrowth of neurons after injury. Previously, we identified several svh genes involved in JNK-mediated signaling. Among them, the svh-1 and svh-2 genes encode a growth factor and its receptor tyrosine kinase (RTK), respectively. This SVH-1–SVH-2 signaling cascade positively regulates axon regeneration through the JNK pathway. In the present study, we investigate the role of the svh-4/ddr-2 gene, which encodes an RTK containing a discoidin domain that is activated by collagen. Indeed, DDR-2 functions downstream of EMB-9 collagen type IV. Here, we show that the ddr-2 and emb-9 mutations delay initiation of regeneration after axon injury. Furthermore, we demonstrate that DDR-2 modulates the SVH-1–SVH-2–JNK pathway through the scaffold protein SHC-1. Thus, two different RTK signaling networks play coordinated roles in the regulation of axonal regeneration.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (K.M.); (N.H.)
| | - Yuki Nagamori
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Tatsuhiro Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Strahil I. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (K.M.); (N.H.)
| |
Collapse
|
3
|
Pastuhov SI, Matsumoto K, Hisamoto N. Endocannabinoid signaling regulates regenerative axon navigation in Caenorhabditis elegans via the GPCRs NPR-19 and NPR-32. Genes Cells 2016; 21:696-705. [PMID: 27193416 DOI: 10.1111/gtc.12377] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/17/2016] [Indexed: 02/05/2023]
Abstract
The axon regeneration ability of neurons depends on the interplay of factors that promote and inhibit regeneration. In Caenorhabditis elegans, axon regeneration is promoted by the JNK MAP kinase (MAPK) pathway. Previously, we found that the endocannabinoid anandamide (AEA) inhibits the axon regeneration response of motor neurons after laser axotomy by suppressing the JNK signaling pathway. Here, we show that the G-protein-coupled receptors (GPCRs) NPR-19 and NPR-32 inhibit axon regeneration in response to AEA. Furthermore, we show that sensory neuron expression of the nape-1 gene, which encodes an enzyme synthesizing AEA, causes the regenerating motor axons to avoid sensory neurons and this avoidant response depends on NPR-19 and NPR-32. These results indicate that the navigation of regenerating axons is modulated by the action of AEA on NPR-19/32 GPCRs.
Collapse
Affiliation(s)
- Strahil Iv Pastuhov
- Division of Biological Science, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate school of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
4
|
Li C, Hisamoto N, Matsumoto K. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways. PLoS Genet 2015; 11:e1005603. [PMID: 26484536 PMCID: PMC4618690 DOI: 10.1371/journal.pgen.1005603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Here, we identify ETS-4 and CEBP-1, related to mammalian Ets and C/EBP, respectively, as transcriptional activators of svh-2 expression following axon injury. ETS-4 and CEBP-1 function downstream of the cAMP and Ca2+-p38 MAPK pathways, respectively. We show that PKA-dependent phosphorylation of ETS-4 promotes its complex formation with CEBP-1. Furthermore, activation of both cAMP and Ca2+ signaling is required for activation of svh-2 expression. Thus, the cAMP/Ca2+ signaling pathways cooperatively activate the JNK pathway, which then promotes axon regeneration.
Collapse
Affiliation(s)
- Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (NH); (KM)
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
- * E-mail: (NH); (KM)
| |
Collapse
|