1
|
Leopold AV, Verkhusha VV. Engineering signalling pathways in mammalian cells. Nat Biomed Eng 2024; 8:1523-1539. [PMID: 39237709 PMCID: PMC11852397 DOI: 10.1038/s41551-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024]
Abstract
In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
DiRusso CJ, Dashtiahangar M, Gilmore TD. Scaffold proteins as dynamic integrators of biological processes. J Biol Chem 2022; 298:102628. [PMID: 36273588 PMCID: PMC9672449 DOI: 10.1016/j.jbc.2022.102628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022] Open
Abstract
Scaffold proteins act as molecular hubs for the docking of multiple proteins to organize efficient functional units for signaling cascades. Over 300 human proteins have been characterized as scaffolds, acting in a variety of signaling pathways. While the term scaffold implies a static, supportive platform, it is now clear that scaffolds are not simply inert docking stations but can undergo conformational changes that affect their dependent signaling pathways. In this review, we catalog scaffold proteins that have been shown to undergo actionable conformational changes, with a focus on the role that conformational change plays in the activity of the classic yeast scaffold STE5, as well as three human scaffold proteins (KSR, NEMO, SHANK3) that are integral to well-known signaling pathways (RAS, NF-κB, postsynaptic density). We also discuss scaffold protein conformational changes vis-à-vis liquid-liquid phase separation. Changes in scaffold structure have also been implicated in human disease, and we discuss how aberrant conformational changes may be involved in disease-related dysregulation of scaffold and signaling functions. Finally, we discuss how understanding these conformational dynamics will provide insight into the flexibility of signaling cascades and may enhance our ability to treat scaffold-associated diseases.
Collapse
|
3
|
Hazegh Nikroo A, Lemmens LJM, Wezeman T, Ottmann C, Merkx M, Brunsveld L. Switchable Control of Scaffold Protein Activity via Engineered Phosphoregulated Autoinhibition. ACS Synth Biol 2022; 11:2464-2472. [PMID: 35765959 PMCID: PMC9295147 DOI: 10.1021/acssynbio.2c00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scaffold proteins operate as organizing hubs to enable high-fidelity signaling, fulfilling crucial roles in the regulation of cellular processes. Bottom-up construction of controllable scaffolding platforms is attractive for the implementation of regulatory processes in synthetic biology. Here, we present a modular and switchable synthetic scaffolding system, integrating scaffold-mediated signaling with switchable kinase/phosphatase input control. Phosphorylation-responsive inhibitory peptide motifs were fused to 14-3-3 proteins to generate dimeric protein scaffolds with appended regulatory peptide motifs. The availability of the scaffold for intermolecular partner protein binding could be lowered up to 35-fold upon phosphorylation of the autoinhibition motifs, as demonstrated using three different kinases. In addition, a hetero-bivalent autoinhibitory platform design allowed for dual-kinase input regulation of scaffold activity. Reversibility of the regulatory platform was illustrated through phosphatase-controlled abrogation of autoinhibition, resulting in full recovery of 14-3-3 scaffold activity.
Collapse
Affiliation(s)
- Arjan Hazegh Nikroo
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Tim Wezeman
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology,
Department of Biomedical Engineering and Institute for Complex Molecular
Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612AZ Arizona, The Netherlands
| |
Collapse
|
4
|
Abstract
Many kinases use reversible docking interactions to augment the specificity of their catalytic domains. Such docking interactions are often structurally independent of the catalytic domain, which allow for a flexible combination of modules in evolution and in bioengineering. The affinity of docking interactions spans several orders of magnitude. This led us to ask how the affinity of the docking interaction affects enzymatic activity and how to pick the optimal interaction module to complement a given substrate. Here, we develop equations that predict the optimal binding strength of a kinase docking interaction and validate it using numerical simulations and steady-state phosphorylation kinetics for tethered protein kinase A. We show that a kinase-substrate pair has an optimum docking strength that depends on their enzymatic constants, the tether architecture, the substrate concentration, and the kinetics of the docking interactions. We show that a reversible tether enhances phosphorylation rates most when 1) the docking strength is intermediate, 2) the substrate is nonoptimal, 3) the substrate concentration is low, 4) the docking interaction has rapid exchange kinetics, and 5) the tether optimizes the effective concentration of the intramolecular reaction. This work serves as a framework for interpreting mutations in kinase docking interactions and as a design guide for engineering enzyme scaffolds.
Collapse
|
5
|
Chen Z, Elowitz MB. Programmable protein circuit design. Cell 2021; 184:2284-2301. [PMID: 33848464 PMCID: PMC8087657 DOI: 10.1016/j.cell.2021.03.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
A fundamental challenge in synthetic biology is to create molecular circuits that can program complex cellular functions. Because proteins can bind, cleave, and chemically modify one another and interface directly and rapidly with endogenous pathways, they could extend the capabilities of synthetic circuits beyond what is possible with gene regulation alone. However, the very diversity that makes proteins so powerful also complicates efforts to harness them as well-controlled synthetic circuit components. Recent work has begun to address this challenge, focusing on principles such as orthogonality and composability that permit construction of diverse circuit-level functions from a limited set of engineered protein components. These approaches are now enabling the engineering of circuits that can sense, transmit, and process information; dynamically control cellular behaviors; and enable new therapeutic strategies, establishing a powerful paradigm for programming biology.
Collapse
Affiliation(s)
- Zibo Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
6
|
Jayanthi B, Bachhav B, Wan Z, Martinez Legaspi S, Segatori L. A platform for post-translational spatiotemporal control of cellular proteins. Synth Biol (Oxf) 2021; 6:ysab002. [PMID: 33763602 PMCID: PMC7976946 DOI: 10.1093/synbio/ysab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mammalian cells process information through coordinated spatiotemporal regulation of proteins. Engineering cellular networks thus relies on efficient tools for regulating protein levels in specific subcellular compartments. To address the need to manipulate the extent and dynamics of protein localization, we developed a platform technology for the target-specific control of protein destination. This platform is based on bifunctional molecules comprising a target-specific nanobody and universal sequences determining target subcellular localization or degradation rate. We demonstrate that nanobody-mediated localization depends on the expression level of the target and the nanobody, and the extent of target subcellular localization can be regulated by combining multiple target-specific nanobodies with distinct localization or degradation sequences. We also show that this platform for nanobody-mediated target localization and degradation can be regulated transcriptionally and integrated within orthogonal genetic circuits to achieve the desired temporal control over spatial regulation of target proteins. The platform reported in this study provides an innovative tool to control protein subcellular localization, which will be useful to investigate protein function and regulate large synthetic gene circuits.
Collapse
Affiliation(s)
- Brianna Jayanthi
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Bhagyashree Bachhav
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zengyi Wan
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Laura Segatori
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Vasilev RA, Chernikovich VY, Evteeva MA, Sakharov DA, Patrushev MV. Synthetic Biology: Current State and Applications. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2021. [DOI: 10.3103/s0891416821010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Genetic circuit design automation for yeast. Nat Microbiol 2020; 5:1349-1360. [DOI: 10.1038/s41564-020-0757-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/17/2020] [Indexed: 11/08/2022]
|
9
|
Lemmens LJM, Roodhuizen JAL, de Greef TFA, Markvoort AJ, Brunsveld L. Designed Asymmetric Protein Assembly on a Symmetric Scaffold. Angew Chem Int Ed Engl 2020; 59:12113-12121. [PMID: 32333708 PMCID: PMC7383506 DOI: 10.1002/anie.202003626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 01/17/2023]
Abstract
Cellular signaling is regulated by the assembly of proteins into higher-order complexes. Bottom-up creation of synthetic protein assemblies, especially asymmetric complexes, is highly challenging. Presented here is the design and implementation of asymmetric assembly of a ternary protein complex facilitated by Rosetta modeling and thermodynamic analysis. The wild-type symmetric CT32-CT32 interface of the 14-3-3-CT32 complex was targeted, ultimately favoring asymmetric assembly on the 14-3-3 scaffold. Biochemical studies, supported by mass-balance models, allowed characterization of the parameters driving asymmetric assembly. Importantly, our work reveals that both the individual binding affinities and cooperativity between the assembling components are crucial when designing higher-order protein complexes. Enzyme complementation on the 14-3-3 scaffold highlighted that interface engineering of a symmetric ternary complex generates asymmetric protein complexes with new functions.
Collapse
Affiliation(s)
- Lenne J. M. Lemmens
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Job A. L. Roodhuizen
- Computational Biology GroupDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Tom F. A. de Greef
- Computational Biology GroupDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525AJNijmegenThe Netherlands
| | - Albert J. Markvoort
- Computational Biology GroupDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
10
|
|
11
|
Lemmens LM, Ottmann C, Brunsveld L. Conjugated Protein Domains as Engineered Scaffold Proteins. Bioconjug Chem 2020; 31:1596-1603. [PMID: 32374984 PMCID: PMC7303964 DOI: 10.1021/acs.bioconjchem.0c00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Indexed: 01/12/2023]
Abstract
Assembly of proteins into higher-order complexes generates specificity and selectivity in cellular signaling. Signaling complex formation is facilitated by scaffold proteins that use modular scaffolding domains, which recruit specific pathway enzymes. Multimerization and recombination of these conjugated native domains allows the generation of libraries of engineered multidomain scaffold proteins. Analysis of these engineered proteins has provided molecular insight into the regulatory mechanism of the native scaffold proteins and the applicability of these synthetic variants. This topical review highlights the use of engineered, conjugated multidomain scaffold proteins on different length scales in the context of synthetic signaling pathways, metabolic engineering, liquid-liquid phase separation, and hydrogel formation.
Collapse
Affiliation(s)
- Lenne
J. M. Lemmens
- Laboratory of Chemical Biology, Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
12
|
Speltz EB, Zalatan JG. The Relationship between Effective Molarity and Affinity Governs Rate Enhancements in Tethered Kinase-Substrate Reactions. Biochemistry 2020; 59:2182-2193. [PMID: 32433869 PMCID: PMC7328773 DOI: 10.1021/acs.biochem.0c00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Scaffold proteins are thought to accelerate protein phosphorylation reactions by tethering kinases and substrates together, but there is little quantitative data on their functional effects. To assess the contribution of tethering to kinase reactivity, we compared intramolecular and intermolecular kinase reactions in a minimal model system. We found that tethering can enhance reaction rates in a flexible tethered kinase system and that the magnitude of the effect is sensitive to the structure of the tether. The largest effective molarity we obtained was ∼0.08 μM, which is much lower than the effects observed in small molecule model systems and other tethered protein reactions. We further demonstrated that the tethered intramolecular reaction only makes a significant contribution to the observed rates when the scaffolded complex assembles at concentrations below the effective molarity. These findings provide a quantitative framework that can be applied to understand endogenous protein scaffolds and engineer synthetic networks.
Collapse
Affiliation(s)
| | - Jesse G. Zalatan
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
13
|
Leydon AR, Gala HP, Guiziou S, Nemhauser JL. Engineering Synthetic Signaling in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:767-788. [PMID: 32092279 DOI: 10.1146/annurev-arplant-081519-035852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic signaling is a branch of synthetic biology that aims to understand native genetic regulatory mechanisms and to use these insights to engineer interventions and devices that achieve specified design parameters. Applying synthetic signaling approaches to plants offers the promise of mitigating the worst effects of climate change and providing a means to engineer crops for entirely novel environments, such as those in space travel. The ability to engineer new traits using synthetic signaling methods will require standardized libraries of biological parts and methods to assemble them; the decoupling of complex processes into simpler subsystems; and mathematical models that can accelerate the design-build-test-learn cycle. The field of plant synthetic signaling is relatively new, but it is poised for rapid advancement. Translation from the laboratory to the field is likely to be slowed, however, by the lack of constructive dialogue between researchers and other stakeholders.
Collapse
Affiliation(s)
- Alexander R Leydon
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| | - Hardik P Gala
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| | - Sarah Guiziou
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| | - Jennifer L Nemhauser
- Department of Biology, University of Washington, Seattle, Washington 98195, USA; , , ,
| |
Collapse
|
14
|
Zeng Y, Bhagyashree B, Zhao W, Nguyen T, Segatori L. Hysteretic Genetic Circuit for Detection of Proteasomal Degradation in Mammalian Cells. ACS Synth Biol 2019; 8:2025-2035. [PMID: 31415719 DOI: 10.1021/acssynbio.9b00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic hysteretic mammalian gene circuits generating sustained cellular responses to transient perturbations provide important tools to investigate complex cellular behaviors and reprogram cells for a variety of applications, ranging from protein production to cell fate decisions. The design rules of synthetic gene circuits with controlled hysteretic behaviors, however, remain uncharacterized. To identify the criteria for achieving predictable control of hysteresis, we built a genetic circuit for detection of proteasomal degradation (Hys-Deg). The Hys-Deg circuit is based on a tetracycline-controlled transactivator (tTA) variant engineered to interface with the ubiquitin proteasome system (UPS). The tTA variant activates its own expression, generating a positive feedback loop that is triggered by expression of another tTA gene that is constitutively regulated. Guided by predictive modeling, we characterized the hysteretic response of the Hys-Deg circuit. We demonstrated that control of the hysteretic response is achieved by modulating the ratio of expression of constitutive to inducible tTA. We also showed that the system can be finely tuned through dosage of the inducer tetracycline to calibrate the circuit for detection of the desired levels of UPS activation. This study establishes the design rules for building a hysteretic genetic circuit with an autoregulatory feedback loop and provides a synthetic memory module that could be easily integrated into regulatory gene networks to study and engineer complex cellular behaviors.
Collapse
|
15
|
Knudsen C, Gallage NJ, Hansen CC, Møller BL, Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Nat Prod Rep 2019; 35:1140-1155. [PMID: 30324199 PMCID: PMC6254060 DOI: 10.1039/c8np00037a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand dynamic biosynthesis and storage of a plethora of phytochemicals.
Covering: up to 2018 Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand synthesis of a plethora of phytochemicals to specifically respond to the challenges arising during plant ontogeny. Key steps in the biosynthesis of phytochemicals are catalyzed by membrane-bound cytochrome P450 enzymes which in plants constitute a superfamily. In planta, the P450s may be organized in dynamic enzyme clusters (metabolons) and the genes encoding the P450s and other enzymes in a specific pathway may be clustered. Metabolon formation facilitates transfer of substrates between sequential enzymes and therefore enables the plant to channel the flux of general metabolites towards biosynthesis of specific phytochemicals. In the plant cell, compartmentalization of the operation of specific biosynthetic pathways in specialized plastids serves to avoid undesired metabolic cross-talk and offers distinct storage sites for molar concentrations of specific phytochemicals. Liquid–liquid phase separation may lead to formation of dense biomolecular condensates within the cytoplasm or vacuole allowing swift activation of the stored phytochemicals as required upon pest or herbivore attack. The molecular grid behind plant plasticity offers an endless reservoir of functional modules, which may be utilized as a synthetic biology tool-box for engineering of novel biological systems based on rational design principles. In this review, we highlight some of the concepts used by plants to coordinate biosynthesis and storage of phytochemicals.
Collapse
Affiliation(s)
- Camilla Knudsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
16
|
Netzer R, Listov D, Lipsh R, Dym O, Albeck S, Knop O, Kleanthous C, Fleishman SJ. Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Nat Commun 2018; 9:5286. [PMID: 30538236 PMCID: PMC6290019 DOI: 10.1038/s41467-018-07722-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023] Open
Abstract
Protein networks in all organisms comprise homologous interacting pairs. In these networks, some proteins are specific, interacting with one or a few binding partners, whereas others are multispecific and bind a range of targets. We describe an algorithm that starts from an interacting pair and designs dozens of new pairs with diverse backbone conformations at the binding site as well as new binding orientations and sequences. Applied to a high-affinity bacterial pair, the algorithm results in 18 new ones, with cognate affinities from pico- to micromolar. Three pairs exhibit 3-5 orders of magnitude switch in specificity relative to the wild type, whereas others are multispecific, collectively forming a protein-interaction network. Crystallographic analysis confirms design accuracy, including in new backbones and polar interactions. Preorganized polar interaction networks are responsible for high specificity, thus defining design principles that can be applied to program synthetic cellular interaction networks of desired affinity and specificity. The molecular basis of ultrahigh specificity in protein-protein interactions remains obscure. The authors present a computational method to design atomically accurate new pairs exhibiting >100,000-fold specificity switches, generating a large and complex interaction network.
Collapse
Affiliation(s)
- Ravit Netzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Rosalie Lipsh
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Orly Dym
- Structural Proteomics Unit, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Shira Albeck
- Structural Proteomics Unit, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Orli Knop
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
17
|
Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 2018; 36:1870-1881. [PMID: 30031049 DOI: 10.1016/j.biotechadv.2018.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
Synthetic biologists construct biological components and systems to look into biological phenomena and drive a myriad of practical applications that aim to tackle current global challenges in energy, healthcare and the environment. While most tools have been established in bacteria, particularly Escherichia coli, recent years have seen parallel developments in the model yeast strain Saccharomyces cerevisiae, one of the most well-understood eukaryotic biological system. Here, we outline the latest advances in yeast synthetic biology tools based on a framework of abstraction hierarchies of parts, circuits and genomes. In brief, the creation and characterization of biological parts are explored at the transcriptional, translational and post-translational levels. Using characterized parts as building block units, the designing of functional circuits is elaborated with examples. In addition, the status and potential applications of synthetic genomes as a genome level platform for biological system construction are also discussed. In addition to the development of a toolkit, we describe how those tools have been applied in the areas of drug production and screening, study of disease mechanisms, pollutant sensing and bioremediation. Finally, we provide a future outlook of yeast as a workhorse of eukaryotic genetics and a chosen chassis in this field.
Collapse
|
18
|
Besada-Lombana PB, McTaggart TL, Da Silva NA. Molecular tools for pathway engineering in Saccharomyces cerevisiae. Curr Opin Biotechnol 2017; 53:39-49. [PMID: 29274630 DOI: 10.1016/j.copbio.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 12/26/2022]
Abstract
Molecular tools for the regulation of protein expression in Saccharomyces cerevisiae have contributed to rapid advances in pathway engineering for this yeast. This review considers new and enhanced additions to this toolbox, focusing on experimental approaches to modulate enzyme synthesis and enzyme fate. Methods for genome engineering, regulation of transcription, post-translational protein localization, and combinatorial screening and sensing in S. cerevisiae are highlighted, and promising new approaches are introduced.
Collapse
Affiliation(s)
- Pamela B Besada-Lombana
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Tami L McTaggart
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | - Nancy A Da Silva
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA.
| |
Collapse
|
19
|
Re A. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology. Front Cell Dev Biol 2017; 5:77. [PMID: 28894736 PMCID: PMC5581392 DOI: 10.3389/fcell.2017.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorino, Italy
| |
Collapse
|
20
|
den Hamer A, Lemmens LJM, Nijenhuis MAD, Ottmann C, Merkx M, de Greef TFA, Brunsveld L. Small-Molecule-Induced and Cooperative Enzyme Assembly on a 14-3-3 Scaffold. Chembiochem 2017; 18:331-335. [PMID: 27897387 PMCID: PMC5299510 DOI: 10.1002/cbic.201600631] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 12/23/2022]
Abstract
Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a scaffold protein platform that is based on the native 14-3-3 dimeric protein and is controllable through the action of a small-molecule compound, thus permitting study in an in vitro setting and mathematical description. Robust small-molecule regulation of caspase-9 activity through induced dimerisation on the 14-3-3 scaffold was demonstrated. The individual parameters of this system were precisely determined and used to develop a mathematical model of the scaffolding concept. This model was used to elucidate the strong cooperativity of the enzyme activation mediated by the 14-3-3 scaffold. This work provides an entry point for the long-needed quantitative insights into scaffold protein functioning and paves the way for the optimal use of reengineered 14-3-3 proteins as chemically inducible scaffolds in synthetic systems.
Collapse
Affiliation(s)
- Anniek den Hamer
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Minke A. D. Nijenhuis
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Christian Ottmann
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Maarten Merkx
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Tom F. A. de Greef
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| |
Collapse
|
21
|
Mathur M, Xiang JS, Smolke CD. Mammalian synthetic biology for studying the cell. J Cell Biol 2016; 216:73-82. [PMID: 27932576 PMCID: PMC5223614 DOI: 10.1083/jcb.201611002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/25/2022] Open
Abstract
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology.
Collapse
Affiliation(s)
- Melina Mathur
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
22
|
Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. eLife 2016; 5. [PMID: 27525484 PMCID: PMC5019841 DOI: 10.7554/elife.15200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI:http://dx.doi.org/10.7554/eLife.15200.001 Nature has evolved a number of ways to link signals from a cell’s environment, like the concentration of a hormone, to the behavior of that cell. These new connections often form by reusing certain common signaling components, such as mitogen-activated protein kinases. These enzymes – referred to as MAPKs for short – are activated by specific signals and alter the activity of target proteins in the cell by adding a phosphate group to them: a process called phosphorylation. These connections thus dictate how cells respond to their environments – and consequently, disruptions to the connections are a common source of disease. Groves, Khakhar et al. set out to understand how connections can be made between a MAPK and a new target protein to gain insights into how these links emerge through evolution and how they might break in disease. Their approach focused on one of the ways that phosphorylation can alter the activity of a target protein: marking it for degradation. Experiments with budding yeast showed that a MAPK could only achieve this if two conditions are met. First, the target protein and kinase need to bind to each other. Second, the target needs to contain a site that when phosphorylated is subsequently recognized by the cell’s protein degradation machinery. By engineering proteins so that they fulfilled these two criteria, Groves, Khakhar et al. created new connections between a yeast MAPK called Fus3 or a human MAPK called ERK2 and a variety of targets. The results showed that the parts of the proteins involved in the interaction step could be completely separate from the parts that are involved in the phosphorylation step. This suggests that connections between kinases and their targets can be rewired simple by mixing together parts of other existing proteins. Finally, Groves, Khakhar et al. confirmed that engineered connections between kinases and targets could predictably change how yeast cells responded to a hormone that normally controls the yeast’s reproductive cycle. Together these results bring us one step closer to understanding how cells assemble the signaling pathways that they use to process information. However further work is needed to see if these findings can be generalized to other signaling components, and if so, to explore if new connections can be built to yield more complicated cellular behaviors. DOI:http://dx.doi.org/10.7554/eLife.15200.002
Collapse
Affiliation(s)
- Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, United States
| | - Arjun Khakhar
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Cory M Nadel
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, United States
| |
Collapse
|
23
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
24
|
RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:165-85. [PMID: 26970194 DOI: 10.1016/bs.pmbts.2015.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems.
Collapse
|
25
|
Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift. Appl Microbiol Biotechnol 2016; 100:4997-5005. [PMID: 26837218 DOI: 10.1007/s00253-016-7335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.
Collapse
|
26
|
Yaffe MB, Gough NR, VanHook AM. Science Signaling
Podcast for 5 January 2016: New directions in signaling research. Sci Signal 2016. [DOI: 10.1126/scisignal.aaf1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Science Signaling
editors discuss the current state of signal transduction research and the journal's place in this dynamic landscape.
Collapse
Affiliation(s)
- Michael B. Yaffe
- Chief Scientific Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
- David H. Koch Institute for Integrative Cancer Research, The Broad Institute, and the Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nancy R. Gough
- Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|