1
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 PMCID: PMC12078925 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Chang K, Gao D, Yan J, Lin L, Cui T, Lu S. Critical Roles of Protein Arginine Methylation in the Central Nervous System. Mol Neurobiol 2023; 60:6060-6091. [PMID: 37415067 DOI: 10.1007/s12035-023-03465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
A remarkable post-transitional modification of both histones and non-histone proteins is arginine methylation. Methylation of arginine residues is crucial for a wide range of cellular process, including signal transduction, DNA repair, gene expression, mRNA splicing, and protein interaction. Arginine methylation is modulated by arginine methyltransferases and demethylases, like protein arginine methyltransferase (PRMTs) and Jumonji C (JmjC) domain containing (JMJD) proteins. Symmetric dimethylarginine and asymmetric dimethylarginine, metabolic products of the PRMTs and JMJD proteins, can be changed by abnormal expression of these proteins. Many pathologies including cancer, inflammation and immune responses have been closely linked to aberrant arginine methylation. Currently, the majority of the literature discusses the substrate specificity and function of arginine methylation in the pathogenesis and prognosis of cancers. Numerous investigations on the roles of arginine methylation in the central nervous system (CNS) have so far been conducted. In this review, we display the biochemistry of arginine methylation and provide an overview of the regulatory mechanism of arginine methyltransferases and demethylases. We also highlight physiological functions of arginine methylation in the CNS and the significance of arginine methylation in a variety of neurological diseases such as brain cancers, neurodegenerative diseases and neurodevelopmental disorders. Furthermore, we summarize PRMT inhibitors and molecular functions of arginine methylation. Finally, we pose important questions that require further research to comprehend the roles of arginine methylation in the CNS and discover more effective targets for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Kewei Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dan Gao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Liyan Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tingting Cui
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shemin Lu
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- Department of Biochemistry and Molecular Biology, and Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
5
|
Chaubey AH, Sojka SE, Onukwufor JO, Ezak MJ, Vandermeulen MD, Bowitch A, Vodičková A, Wojtovich AP, Ferkey DM. The Caenorhabditis elegans innexin INX-20 regulates nociceptive behavioral sensitivity. Genetics 2023; 223:iyad017. [PMID: 36753530 PMCID: PMC10319955 DOI: 10.1093/genetics/iyad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/03/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Organisms rely on chemical cues in their environment to indicate the presence or absence of food, reproductive partners, predators, or other harmful stimuli. In the nematode Caenorhabditis elegans, the bilaterally symmetric pair of ASH sensory neurons serves as the primary nociceptors. ASH activation by aversive stimuli leads to backward locomotion and stimulus avoidance. We previously reported a role for guanylyl cyclases in dampening nociceptive sensitivity that requires an innexin-based gap junction network to pass cGMP between neurons. Here, we report that animals lacking function of the gap junction component INX-20 are hypersensitive in their behavioral response to both soluble and volatile chemical stimuli that signal through G protein-coupled receptor pathways in ASH. We find that expressing inx-20 in the ADL and AFD sensory neurons is sufficient to dampen ASH sensitivity, which is supported by new expression analysis of endogenous INX-20 tagged with mCherry via the CRISPR-Cas9 system. Although ADL does not form gap junctions directly with ASH, it does so via gap junctions with the interneuron RMG and the sensory neuron ASK. Ablating either ADL or RMG and ASK also resulted in nociceptive hypersensitivity, suggesting an important role for RMG/ASK downstream of ADL in the ASH modulatory circuit. This work adds to our growing understanding of the repertoire of ways by which ASH activity is regulated via its connectivity to other neurons and identifies a previously unknown role for ADL and RMG in the modulation of aversive behavior.
Collapse
Affiliation(s)
- Aditi H Chaubey
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Savannah E Sojka
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - John O Onukwufor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Meredith J Ezak
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
6
|
Kawahata I, Fukunaga K. Endocytosis of dopamine receptor: Signaling in brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:99-111. [PMID: 36813367 DOI: 10.1016/bs.pmbts.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This chapter describes the physiological significance of dopamine receptor endocytosis and the consequence of the receptor signaling. Endocytosis of dopamine receptors is regulated by many components such as clathrin, β-arrestin, caveolin, and Rab family proteins. The dopamine receptors escape from lysosomal digestion, and their recycling occurs rapidly, reinforcing the dopaminergic signal transduction. In addition, the pathological impact of the receptors interacting with specific proteins has been the focus of much attention. Based on this background, this chapter provides an in-depth understanding of the mechanisms of molecules interacting with dopamine receptors and discusses the potential pharmacotherapeutic targets for α-synucleinopathies and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS drug innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Kohji Fukunaga
- Department of CNS drug innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
7
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Bowitch A, Chinsky TM, Yu MC, Ferkey DM. The C. elegans OCTR-1 and Human Alpha-2A Adrenergic Receptors are Methylated within the Third Intracellular Loop by Human PRMT5 in vitro. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000546. [PMID: 35622502 PMCID: PMC9007614 DOI: 10.17912/micropub.biology.000546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Arginines within the third intracellular loop of the
C. elegans
OCTR-1 and human ADRA2A receptors are methylated by the human protein arginine methyltransferase PRMT5
in vitro
. Methylation of these residues could serve to modulate receptor signaling
in vivo
.
Collapse
Affiliation(s)
- Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Tyler M. Chinsky
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Michael C. Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
,
Correspondence to: Denise M. Ferkey (
)
| |
Collapse
|
9
|
Bowitch A, Sahoo A, Clark AM, Ntangka C, Raut KK, Gollnick P, Yu MC, Pascal SM, Walker SE, Ferkey DM. Methylation of the D2 dopamine receptor affects binding with the human regulatory proteins Par-4 and Calmodulin. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000366. [PMID: 33598640 PMCID: PMC7876548 DOI: 10.17912/micropub.biology.000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ansuman Sahoo
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Andrea M. Clark
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529
| | - Christiana Ntangka
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529,
Current address: Department of Biochemistry and Biophysics, Brandeis University, Waltham, MA 02454
| | - Krishna K. Raut
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529
| | - Paul Gollnick
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Michael C. Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Steven M. Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529
| | - Sarah E. Walker
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260,
Correspondence to: Denise M. Ferkey ()
| |
Collapse
|
10
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
11
|
Blagotinšek Cokan K, Mavri M, Rutland CS, Glišić S, Senćanski M, Vrecl M, Kubale V. Critical Impact of Different Conserved Endoplasmic Retention Motifs and Dopamine Receptor Interacting Proteins (DRIPs) on Intracellular Localization and Trafficking of the D 2 Dopamine Receptor (D 2-R) Isoforms. Biomolecules 2020; 10:biom10101355. [PMID: 32977535 PMCID: PMC7598153 DOI: 10.3390/biom10101355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The type 2 dopamine receptor D2 (D2-R), member of the G protein-coupled receptor (GPCR) superfamily, exists in two isoforms, short (D2S-R) and long (D2L-R). They differ by an additional 29 amino acids (AA) in the third cytoplasmic loop (ICL3) of the D2L-R. These isoforms differ in their intracellular localization and trafficking functionality, as D2L-R possesses a larger intracellular pool, mostly in the endoplasmic reticulum (ER). This review focuses on the evolutionarily conserved motifs in the ICL3 of the D2-R and proteins interacting with the ICL3 of both isoforms, specifically with the 29 AA insert. These motifs might be involved in D2-R exit from the ER and have an impact on cell-surface and intracellular localization and, therefore, also play a role in the function of dopamine receptor signaling, ligand binding and possible homo/heterodimerization. Our recent bioinformatic data on potential new interaction partners for the ICL3 of D2-Rs are also presented. Both are highly relevant, and have clinical impacts on the pathophysiology of several diseases such as Parkinson’s disease, schizophrenia, Tourette’s syndrome, Huntington’s disease, manic depression, and others, as they are connected to a variety of essential motifs and differences in communication with interaction partners.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, Sutton, Bonington Campus, Loughborough LE12 5RD, UK;
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
- Correspondence:
| |
Collapse
|
12
|
Du B, Jin N, Zhu X, Lu D, Jin C, Li Z, Han C, Zhang Y, Lai D, Liu K, Wei R. A prospective study of serum metabolomic and lipidomic changes in myopic children and adolescents. Exp Eye Res 2020; 199:108182. [PMID: 32781198 DOI: 10.1016/j.exer.2020.108182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myopia is a prevalent eye disorder, especially among children and adolescents in eastern Asian countries. Multiple measures have already been taken to prevent and treat myopia, including atropine and dopamine. However, the serum metabolic picture of myopia has not yet been studied as a whole and remains largely unclear. In this paper, a prospective and panoramic study was carried out to find out the whole serum metabolomic and lipidomic picture of myopia. METHODS With untargeted mass spectrometry (MS), myopia among 211 children and adolescents was studied. The MS features were first grouped across the samples. Then, compound annotation was carried out based on these features. Finally, the metabolite features were mapped to pathways, whose biological functions in myopia were studied and discussed. RESULTS A total of 275 metabolite features were derived from 92 aligned MS peak groups with significant fold changes, and then mapped to 33 pathways. By a comprehensive consideration of significance, fold change, importance score and appearance in different omics, 9 pathways were selected, and their biological functions were further analyzed. Among these selected pathways, 5 pathways were related with oxidative stress, a validated phenomenon during myopia development, while 5 pathways were related with dopamine receptor D2, whose molecular function in myopia treatment is not fully understood. A total of 177 metabolite features from 45 peak groups were related with the studied pathways. CONCLUSION This prospective study shed light on the whole picture of metabolomic mechanism underlying myopia and provided guidance to further elucidation of compounds and pathways in this whole picture.
Collapse
Affiliation(s)
- Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nan Jin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiurui Zhu
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China; Department of Cardiothoracic Surgery, School of Medicine, Stanford University, CA, USA
| | - Daqian Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chengcheng Jin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhen Li
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China; School of Electrical Engineering, Southeast University, Jiangsu Province, China
| | - Chunle Han
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Yani Zhang
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Donghai Lai
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China
| | - Kang Liu
- Tianjin Yunjian Medical Technology Co., Ltd., Tianjin, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
13
|
Torshin IY, Gromova OA, Zgoda VG, Tikhonova OV, Malyavskaya SI. [Cerebrolysin peptides as mood stabilizers]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:69-75. [PMID: 31994517 DOI: 10.17116/jnevro201911912169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM To establish the molecular mechanisms of the mood stabilizing (normothymic) action of the neuroprotector Cerebrolysin. MATERIAL AND METHODS Mass-spectrometric analysis of the peptide composition of cerebrolysin followed by a complex bioinformatics analysis was utilized. RESULTS Cerebrolysin contains considerable amounts of Leu- and Met-enkephalins, partial analogues of enkephalins, peptide fragments of beta-lipotropin. These peptides stimulate the endorphinergic system thus contributing to normothymic action and an increase in the levels of the brain-derived neurotrophic factor (BDNF). Specific inhibition of kinases ABL1, PINK1, CDK5 and arginine N-methyltransferase PRMT5 by the peptides of cerebrolysin has a multidirectional effect on the dopaminergic system, also helping to stabilize mood. Cerebrolysin peptides do not directly affect neither the serotonergic, adrenergic, nor GABAergic systems. CONCLUSION The normothymic effect of Cerebrolysin is due to the stabilization of endorphinergic and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- I Yu Torshin
- Federal Research Center 'Computer Science and Control' of the Russian Academy of Sciences, Moscow, Russia; Big Data Storage and Analysis Center, Moscow State University, Moscow, Russia; SevGMU 'Northern State Medical University' of the Ministry of Health of Russia, Arkhangelsk, Russia
| | - O A Gromova
- Federal Research Center 'Computer Science and Control' of the Russian Academy of Sciences, Moscow, Russia; Big Data Storage and Analysis Center, Moscow State University, Moscow, Russia; SevGMU 'Northern State Medical University' of the Ministry of Health of Russia, Arkhangelsk, Russia
| | - V G Zgoda
- IBMH them. V.N. Orekhovich, CCP 'Human Proteome', Moscow, Russia
| | - O V Tikhonova
- IBMH them. V.N. Orekhovich, CCP 'Human Proteome', Moscow, Russia
| | - S I Malyavskaya
- SevGMU 'Northern State Medical University' of the Ministry of Health of Russia, Arkhangelsk, Russia
| |
Collapse
|
14
|
Su M, Zhou J, Duan Z, Zhang J. Transcriptional analysis of renal dopamine-mediated Na + homeostasis response to environmental salinity stress in Scatophagus argus. BMC Genomics 2019; 20:418. [PMID: 31126236 PMCID: PMC6534869 DOI: 10.1186/s12864-019-5795-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background To control the osmotic pressure in the body, physiological adjustments to salinity fluctuations require the fish to regulate body fluid homeostasis in relation to environmental change via osmoregulation. Previous studies related to osmoregulation were focused primarily on the gill; however, little is known about another organ involved in osmoregulation, the kidney. The salinity adaptation of marine fish involves complex physiological traits, metabolic pathways and molecular and gene networks in osmoregulatory organs. To further explore of the salinity adaptation of marine fish with regard to the role of the kidney, the euryhaline fish Scatophagus argus was employed in the present study. Renal expression profiles of S. argus at different salinity levels were characterized using RNA-sequencing, and an integrated approach of combining molecular tools with physiological and biochemical techniques was utilized to reveal renal osmoregulatory mechanisms in vivo and in vitro. Results S. argus renal transcriptomes from the hyposaline stress (0‰, freshwater [FW]), hypersaline stress (50‰, hypersaline water [HW]) and control groups (25‰) were compared to elucidate potential osmoregulatory mechanisms. In total, 19,012 and 36,253 differentially expressed genes (DEGs) were obtained from the FW and HW groups, respectively. Based on the functional classification of DEGs, the renal dopamine system-induced Na+ transport was demonstrated to play a fundamental role in osmoregulation. In addition, for the first time in fish, many candidate genes associated with the dopamine system were identified. Furthermore, changes in environmental salinity affected renal dopamine release/reuptake by regulating the expression of genes related to dopamine reuptake (dat and nkaα1), vesicular traffic-mediated dopamine release (pink1, lrrk2, ace and apn), DAT phosphorylation (CaMKIIα and pkcβ) and internalization (akt1). The associated transcriptional regulation ensured appropriate extracellular dopamine abundance in the S. argus kidney, and fluctuations in extracellular dopamine produced a direct influence on Na+/K+-ATPase (NKA) expression and activity, which is associated with Na+ homeostasis. Conclusions These transcriptomic data provided insight into the molecular basis of renal osmoregulation in S. argus. Significantly, the results of this study revealed the mechanism of renal dopamine system-induced Na+ transport is essential in fish osmoregulation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5795-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianan Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhengyu Duan
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China. .,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
15
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|
16
|
Bowitch A, Michaels KL, Yu MC, Ferkey DM. The Protein Arginine Methyltransferase PRMT-5 Regulates SER-2 Tyramine Receptor-Mediated Behaviors in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2018; 8:2389-2398. [PMID: 29760200 PMCID: PMC6027898 DOI: 10.1534/g3.118.200360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors are 7-pass transmembrane receptors that couple to heterotrimeric G proteins to mediate cellular responses to a diverse array of stimuli. Understanding the mechanisms that regulate G protein-coupled receptors is crucial to manipulating their signaling for therapeutic benefit. One key regulatory mechanism that contributes to the functional diversity of many signaling proteins is post-translational modification. Whereas phosphorylation remains the best studied of such modifications, arginine methylation by protein arginine methyltransferases is emerging as a key regulator of protein function. We previously published the first functional evidence that arginine methylation of G protein-coupled receptors modulates their signaling. We report here a third receptor that is regulated by arginine methylation, the Caenorhabditis elegans SER-2 tyramine receptor. We show that arginines within a putative methylation motif in the third intracellular loop of SER-2 are methylated by PRMT5 in vitro Our data also suggest that this modification enhances SER-2 signaling in vivo to modulate animal behavior. The identification of a third G protein-coupled receptor to be functionally regulated by arginine methylation suggests that this post-translational modification may be utilized to regulate signaling through a broad array of G protein-coupled receptors.
Collapse
Affiliation(s)
- Alexander Bowitch
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Kerry L Michaels
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Michael C Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
17
|
Hadjikyriacou A, Clarke SG. Caenorhabditis elegans PRMT-7 and PRMT-9 Are Evolutionarily Conserved Protein Arginine Methyltransferases with Distinct Substrate Specificities. Biochemistry 2017; 56:2612-2626. [PMID: 28441492 DOI: 10.1021/acs.biochem.7b00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Caenorhabditis elegans protein arginine methyltransferases PRMT-7 and PRMT-9 are two evolutionarily conserved enzymes, with distinct orthologs in plants, invertebrates, and vertebrates. Biochemical characterization of these two enzymes reveals that they share much in common with their mammalian orthologs. C. elegans PRMT-7 produces only monomethylarginine (MMA) and preferentially methylates R-X-R motifs in a broad collection of substrates, including human histone peptides and RG-rich peptides. In addition, the activity of the PRMT-7 enzyme is dependent on temperature, the presence of metal ions, and the reducing agent dithiothreitol. C. elegans PRMT-7 has a substrate specificity and a substrate preference different from those of mammalian PRMT7, and the available X-ray crystal structures of the PRMT7 orthologs show differences in active site architecture. C. elegans PRMT-9, on the other hand, produces symmetric dimethylarginine and MMA on SFTB-2, the conserved C. elegans ortholog of human RNA splicing factor SF3B2, indicating a possible role in the regulation of nematode splicing. In contrast to PRMT-7, C. elegans PRMT-9 appears to be biochemically indistinguishable from its human ortholog.
Collapse
Affiliation(s)
- Andrea Hadjikyriacou
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Steven G Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
18
|
Espejo AB, Gao G, Black K, Gayatri S, Veland N, Kim J, Chen T, Sudol M, Walker C, Bedford MT. PRMT5 C-terminal Phosphorylation Modulates a 14-3-3/PDZ Interaction Switch. J Biol Chem 2017; 292:2255-2265. [PMID: 28031468 PMCID: PMC5313098 DOI: 10.1074/jbc.m116.760330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
PRMT5 is the primary enzyme responsible for the deposition of the symmetric dimethylarginine in mammalian cells. In an effort to understand how PRMT5 is regulated, we identified a threonine phosphorylation site within a C-terminal tail motif, which is targeted by the Akt/serum- and glucocorticoid-inducible kinases. While investigating the function of this posttranslational modification, we serendipitously discovered that its free C-terminal tail binds PDZ domains (when unphosphorylated) and 14-3-3 proteins (when phosphorylated). In essence, a phosphorylation event within the last few residues of the C-terminal tail generates a posttranslational modification-dependent PDZ/14-3-3 interaction "switch." The C-terminal motif of PRMT5 is required for plasma membrane association, and loss of this switching capacity is not compatible with life. This signaling phenomenon was recently reported for the HPV E6 oncoprotein but has not yet been observed for mammalian proteins. To investigate the prevalence of PDZ/14-3-3 switching in signal transduction, we built a protein domain microarray that harbors PDZ domains and 14-3-3 proteins. We have used this microarray to interrogate the C-terminal tails of a small group of candidate proteins and identified ERBB4, PGHS2, and IRK1 (as well as E6 and PRMT5) as conforming to this signaling mode, suggesting that PDZ/14-3-3 switching may be a broad biological paradigm.
Collapse
Affiliation(s)
- Alexsandra B Espejo
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
- the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Guozhen Gao
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Karynne Black
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Sitaram Gayatri
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
- the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Nicolas Veland
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
- the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Jeesun Kim
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Taiping Chen
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Marius Sudol
- the Department of Physiology, National University of Singapore, Mechanobiology Institute and Institute for Molecular and Cell Biology (IMCB, A*STAR), Singapore 117597, Singapore, and
| | - Cheryl Walker
- the Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Mark T Bedford
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957,
| |
Collapse
|
19
|
Abstract
Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in cellular processes at different stages of the cell cycle in a tissue specific manner. PRMT5 in complex with MEP50/p44/WDR77 associates with a plethora of partner proteins to symmetrically dimethylate arginine residues on target proteins in both the nucleus and the cytoplasm. Overexpression of PRMT5 has been observed in several cancers, making it an attractive drug target. The structure of the 453 kDa heterooctameric PRMT5:MEP50 complex bound to an S-adenosylmethionine analog and a substrate peptide provides valuable insights into this intriguing target.
Collapse
Affiliation(s)
- Stephen Antonysamy
- Structural Biology, Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA, 92121, USA.
| |
Collapse
|