1
|
Xu L, Wang B, Gang Z, Han Z, Wang A, Liu Q, Liu H, Wei S, Lin Z, Xie C, Hu L. Ubiquitin-conjugating enzyme E2S decreases the sensitivity of glioblastoma cells to temozolomide by upregulating PGAM1 via the interaction with OTUB2. Int J Biol Macromol 2025; 302:140583. [PMID: 39904430 DOI: 10.1016/j.ijbiomac.2025.140583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive cancer with limited therapeutic options. Investigating the mechanisms underlying temozolomide (TMZ) resistance and enhancing its sensitivity remain critical for improving GBM treatment outcomes. Ubiquitin-conjugating enzyme E2S (UBE2S) has been implicated in various cancers; however, its role in TMZ resistance in GBM remains unclear. METHODS After UBE2S knockdown, cell viability, apoptosis, and DNA damage were measured in TMZ-treated GBM cells. Immunoprecipitation coupled with mass spectrometry was employed to identify a protein complex involving UBE2S and phosphoglycerate mutase 1 (PGAM1). Co-immunoprecipitation and ubiquitination assays were conducted to examine the interactions among UBE2S, PGAM1, and Otubain-2 (OTUB2). In vivo, a GBM mouse model was used to evaluate the impact of UBE2S knockdown on TMZ efficacy. RESULTS UBE2S was found to be overexpressed in GBM cells, where it interacts with PGAM1 and OTUB2 to inhibit PGAM1 degradation via K48-linked deubiquitylation. This interaction increased PGAM1 protein levels, promoting DNA repair and reducing apoptosis, thereby decreasing the sensitivity of GBM cells to TMZ. CONCLUSION UBE2S plays a critical role in TMZ resistance by stabilizing PGAM1 protein levels through its interaction with OTUB2. Targeting UBE2S represents a promising therapeutic strategy to enhance TMZ efficacy and overcome chemotherapy resistance in GBM.
Collapse
Affiliation(s)
- Lin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Baoju Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Zhenbo Gang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Aowen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang Province 150069, China
| | - Shilong Wei
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| | - Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| | - Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
2
|
Wang C, Zhang G, Jiang Y, Bao G, Li C. UBE2S, downregulated by miR-152-3p, facilitates prostate cancer progression through the PTEN-mediated AKT/mTOR pathway. Hum Mol Genet 2025; 34:523-532. [PMID: 39807632 DOI: 10.1093/hmg/ddaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
OBJECTIVES In recent years, the incidence and mortality rates of prostate cancer (PCa) have still not been significantly reduced and the mechanisms of tumor onset and progression are still not fully understood. The pathogenic mechanisms and upstream regulation of UBE2S expression in prostate cancer have not been elucidated. METHODS Here, we performed bioinformatic analysis of public databases to reveal the expression of UBE2S in PCa and its association with Gleason score, tumor staging, biochemical recurrence, and survival. Subsequently, the effect of UBE2S on the proliferation and invasive capacity of PCa cells was explored. Next, miR-152-3p was identified to bind to the 3'-UTR of UBE2S mRNA and down-regulated in PCa through luciferase reporter assays. Dual immunofluorescence assay and co-immunoprecipitation assays were performed to verify the regulatory role of UBE2S on PTEN. Finally, the molecular mechanism of UBE2S regulation of PCa progression was further confirmed by rescue experiments and in vivo nude mouse subcutaneous transplantation tumor experiments. RESULTS UBE2S expression was upregulated in PCa and correlated with patient Gleason score, TNM stage, biochemical recurrence, and disease-free survival. miR-152-3p regulated UBE2S expression in PCa by binding to the UBE2S mRNA 3'-UTR. Mechanistically, UBE2S combines with PTEN and ubiquitinates it, leading to PTEN degradation and ultimately promoting PCa progression via the AKT/mTOR signaling pathway. CONCLUSIONS UBE2S, down-regulated by miR-152-3p, plays an important role in the onset and progression of PCa through the PTEN-mediated Akt/mTOR pathway and may become a new diagnostic marker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Chunhui Wang
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Gang Zhang
- Departments of Urology, Yan Tai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Binzhou, China
| | - Ying Jiang
- Medical Reproductive Center, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Guochang Bao
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| | - Chunsheng Li
- Departments of Urology, Affiliated Hospital of Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
- Urology Research Center, Chifeng University, No. 42 Wangfu Street, 024000, Chifeng, China
| |
Collapse
|
3
|
Kahraman K, Robson SA, Göcenler O, Yenici CM, Tozkoparan Ceylan CD, Klein JM, Dötsch V, Elgin ES, Haas AL, Ziarek JJ, Dağ Ç. Characterizing the Monomer-Dimer Equilibrium of UbcH8/Ube2L6: A Combined SAXS and NMR Study. ACS OMEGA 2024; 9:39564-39572. [PMID: 39346869 PMCID: PMC11425648 DOI: 10.1021/acsomega.4c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 10/01/2024]
Abstract
Interferon-stimulated gene-15 (ISG15) is an interferon-induced protein with two ubiquitin-like (Ubl) domains linked by a short peptide chain and is a conjugated protein of the ISGylation system. Similar to ubiquitin and other Ubls, ISG15 is ligated to its target proteins through a series of E1, E2, and E3 enzymes known as Uba7, Ube2L6/UbcH8, and HERC5, respectively. Ube2L6/UbcH8 plays a central role in ISGylation, underscoring it as an important drug target for boosting innate antiviral immunity. Depending on the type of conjugated protein and the ultimate target protein, E2 enzymes have been shown to function as monomers, dimers, or both. UbcH8 has been crystallized in both monomeric and dimeric forms, but its functional state remains unclear. Here, we used a combined approach of small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy to characterize UbcH8's oligomeric state in solution. SAXS revealed a dimeric UbcH8 structure that could be dissociated when fused N-terminally to glutathione S-transferase. NMR spectroscopy validated the presence of a concentration-dependent monomer-dimer equilibrium and suggested a back-side dimerization interface. Chemical shift perturbation and peak intensity analysis further suggest dimer-induced conformational dynamics at the E1 and E3 interfaces, providing hypotheses for the protein's functional mechanisms. Our study highlights the power of combining NMR and SAXS techniques to provide structural information about proteins in solution.
Collapse
Affiliation(s)
- Kerem Kahraman
- Nanofabrication
and Nanocharacterization Center for Scientific and Technological Advanced
Research (nSTAR), Koç
University, İstanbul 34450, Turkey
| | - Scott A. Robson
- Department
of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Avenue, Chicago, Illinois 460611, United States
| | - Oktay Göcenler
- Nanofabrication
and Nanocharacterization Center for Scientific and Technological Advanced
Research (nSTAR), Koç
University, İstanbul 34450, Turkey
| | - Cansu M. Yenici
- Nanofabrication
and Nanocharacterization Center for Scientific and Technological Advanced
Research (nSTAR), Koç
University, İstanbul 34450, Turkey
| | - Cansu D. Tozkoparan Ceylan
- Nanofabrication
and Nanocharacterization Center for Scientific and Technological Advanced
Research (nSTAR), Koç
University, İstanbul 34450, Turkey
| | - Jennifer M. Klein
- Department
of Biochemistry and Molecular Biology, LSUHSC-School
of Medicine, 1901 Perdido Street, New Orleans, Louisiana 70112, United States
| | - Volker Dötsch
- Centre
for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Frankfurt 60439, Germany
| | - Emine Sonay Elgin
- College
of Sciences, Department of Chemistry, Muğla
Sıtkı Koçman University, Muğla 48000, Turkey
| | - Arthur L. Haas
- Department
of Biochemistry and Molecular Biology, LSUHSC-School
of Medicine, 1901 Perdido Street, New Orleans, Louisiana 70112, United States
| | - Joshua J. Ziarek
- Department
of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Avenue, Chicago, Illinois 460611, United States
| | - Çağdaş Dağ
- Nanofabrication
and Nanocharacterization Center for Scientific and Technological Advanced
Research (nSTAR), Koç
University, İstanbul 34450, Turkey
- Koç
University Isbank Center for Infectious Diseases (KUISCID), Koç
University, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Taylor JD, Barrett N, Martinez Cuesta S, Cassidy K, Pachl F, Dodgson J, Patel R, Eriksson TM, Riley A, Burrell M, Bauer C, Rees DG, Cimbro R, Zhang AX, Minter RR, Hunt J, Legg S. Targeted protein degradation using chimeric human E2 ubiquitin-conjugating enzymes. Commun Biol 2024; 7:1179. [PMID: 39300128 DOI: 10.1038/s42003-024-06803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Proteins can be targeted for degradation by engineering biomolecules that direct them to the eukaryotic ubiquitination machinery. For instance, the fusion of an E3 ubiquitin ligase to a suitable target binding domain creates a 'biological Proteolysis-Targeting Chimera' (bioPROTAC). Here we employ an analogous approach where the target protein is recruited directly to a human E2 ubiquitin-conjugating enzyme via an attached target binding domain. Through rational design and screening we develop E2 bioPROTACs that induce the degradation of the human intracellular proteins SHP2 and KRAS. Using global proteomics, we characterise the target-specific and wider effects of E2 vs. VHL-based fusions. Taking SHP2 as a model target, we also employ a route to bioPROTAC discovery based on protein display libraries, yielding a degrader with comparatively weak affinity capable of suppressing SHP2-mediated signalling.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Nathalie Barrett
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Sergio Martinez Cuesta
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Katelyn Cassidy
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Fiona Pachl
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - James Dodgson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Radhika Patel
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Tuula M Eriksson
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Aidan Riley
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Matthew Burrell
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Christin Bauer
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - D Gareth Rees
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Raffaello Cimbro
- Centre for Genomics Research, Dynamic Omics, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Andrew X Zhang
- Protein Sciences, Discovery Sciences, R&D BioPharmaceuticals, AstraZeneca, Waltham, MA, 02451, USA
| | - Ralph R Minter
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| | - James Hunt
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK.
| | - Sandrine Legg
- Biologics Engineering, R&D Oncology, AstraZeneca, Cambridge, CB2 0AA, UK
| |
Collapse
|
5
|
Kahraman K, Robson SA, Göcenler O, Yenici CM, Tozkoparan CD, Klein JM, Dötsch V, Elgin ES, Haas AL, Ziarek JJ, Dağ Ç. Characterizing the monomer-dimer equilibrium of UbcH8/Ube2L6: A combined SAXS and NMR study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536743. [PMID: 37090523 PMCID: PMC10120734 DOI: 10.1101/2023.04.13.536743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Interferon-stimulated gene-15 (ISG15) is an interferon-induced protein with two ubiquitin-like (Ubl) domains linked by a short peptide chain, and the conjugated protein of the ISGylation system. Similar to ubiquitin and other Ubls, ISG15 is ligated to its target proteins through a series of E1, E2, and E3 enzymes known as Uba7, Ube2L6/UbcH8, and HERC5, respectively. Ube2L6/UbcH8 plays a literal central role in ISGylation, underscoring it as an important drug target for boosting innate antiviral immunity. Depending on the type of conjugated protein and the ultimate target protein, E2 enzymes have been shown to function as monomers, dimers, or both. UbcH8 has been crystalized in both monomeric and dimeric forms, but the functional state is unclear. Here, we used a combined approach of small-angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) spectroscopy to characterize UbcH8's oligomeric state in solution. SAXS revealed a dimeric UbcH8 structure that could be dissociated when fused N-terminally to glutathione S-transferase. NMR spectroscopy validated the presence of a concentration-dependent monomer-dimer equilibrium and suggested a backside dimerization interface. Chemical shift perturbation and peak intensity analysis further suggest dimer-induced conformational dynamics at E1 and E3 interfaces - providing hypotheses for the protein's functional mechanisms. Our study highlights the power of combining NMR and SAXS techniques in providing structural information about proteins in solution.
Collapse
Affiliation(s)
- Kerem Kahraman
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (nSTAR), Koc University, İstanbul, Turkey
| | - Scott A. Robson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Avenue, Chicago, IL, 460611, USA
| | - Oktay Göcenler
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (nSTAR), Koc University, İstanbul, Turkey
| | - Cansu M. Yenici
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (nSTAR), Koc University, İstanbul, Turkey
| | - Cansu D. Tozkoparan
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (nSTAR), Koc University, İstanbul, Turkey
| | - Jennifer M. Klein
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Volker Dötsch
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe-University of Frankfurt/Main, Germany
| | - Emine Sonay Elgin
- Muğla Sıtkı Koçman University, College of Sciences, Department of Chemistry, Mugla, 48000, Turkey
| | - Arthur L. Haas
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Joshua J. Ziarek
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 320 East Superior Avenue, Chicago, IL, 460611, USA
| | - Çağdaş Dağ
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (nSTAR), Koc University, İstanbul, Turkey
- Koc University Isbank Center for Infectious Diseases (KUISCID), Koc University, Istanbul, Turkey
| |
Collapse
|
6
|
Düring J, Wolter M, Toplak JJ, Torres C, Dybkov O, Fokkens TJ, Bohnsack KE, Urlaub H, Steinchen W, Dienemann C, Lorenz S. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat Struct Mol Biol 2024; 31:364-377. [PMID: 38332367 PMCID: PMC10873202 DOI: 10.1038/s41594-023-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.
Collapse
Affiliation(s)
- Jonas Düring
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Madita Wolter
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia J Toplak
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Camilo Torres
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- 'Bioanalytics', Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Göttingen, Göttingen, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
8
|
Middleton AJ, Day CL. From seeds to trees: how E2 enzymes grow ubiquitin chains. Biochem Soc Trans 2023; 51:353-362. [PMID: 36645006 PMCID: PMC9987950 DOI: 10.1042/bst20220880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Modification of proteins by ubiquitin is a highly regulated process that plays a critical role in eukaryotes, from the construction of signalling platforms to the control of cell division. Aberrations in ubiquitin transfer are associated with many diseases, including cancer and neurodegenerative disorders. The ubiquitin machinery generates a rich code on substrate proteins, spanning from single ubiquitin modifications to polyubiquitin chains with diverse linkage types. Central to this process are the E2 enzymes, which often determine the exact nature of the ubiquitin code. The focus of this mini-review is on the molecular details of how E2 enzymes can initiate and grow ubiquitin chains. In particular, recent developments and biochemical breakthroughs that help explain how the degradative E2 enzymes, Ube2s, Ube2k, and Ube2r, generate complex ubiquitin chains with exquisite specificity will be discussed.
Collapse
Affiliation(s)
- Adam J. Middleton
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Catherine L. Day
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Lin CY, Yu CJ, Liu CY, Chao TC, Huang CC, Tseng LM, Lai JI. CDK4/6 inhibitors downregulate the ubiquitin-conjugating enzymes UBE2C/S/T involved in the ubiquitin-proteasome pathway in ER + breast cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2120-2135. [PMID: 35917055 DOI: 10.1007/s12094-022-02881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
Abstract
Despite significant improvement in therapeutic development in the past decades, breast cancer remains a formidable cause of death for women worldwide. The hormone positive subtype (HR( +)) (also known as luminal type) is the most prevalent category of breast cancer, comprising ~ 70% of patients. The clinical success of the three CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib has revolutionized the treatment of choice for metastatic HR( +) breast cancer. Accumulating evidence demonstrate that the properties of CDK4/6 inhibitors extend beyond inhibition of the cell cycle, including modulation of immune function, sensitizing PI3K inhibitors, metabolism reprogramming, kinome rewiring, modulation of the proteasome, and many others. The ubiquitin-proteasome pathway (UPP) is a crucial cellular proteolytic system that maintains the homeostasis and turnover of proteins. By transcriptional profiling of the HR( +) breast cancer cell lines MCF7 and T47D treated with Palbociclib, we have uncovered a novel mechanism that demonstrates that the CDK4/6 inhibitors suppress the expression of three ubiquitin-conjugating enzymes UBE2C, UBE2S, UBE2T. Further validation in the HR( +) cell lines show that Palbociclib and ribociclib decrease UBE2C at both the mRNA and protein level, but this phenomenon was not shared with abemaciclib. These three E2 enzymes modulate several E3 ubiquitin ligases, including the APC/C complex which plays a role in G1/S progression. We further demonstrate that the UBE2C/UBE2T expression levels are associated with breast cancer survival, and HR( +) breast cancer cells demonstrate dependence on the UBE2C. Our study suggests a novel link between CDK4/6 inhibitor and UPP pathway, adding to the potential mechanisms of their clinical efficacy in cancer.
Collapse
Affiliation(s)
- Chih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jen Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
10
|
Arsenault HE, Ghizzoni JM, Leech CM, Diers AR, Gesta S, Vishnudas VK, Narain NR, Sarangarajan R, Benanti JA. Ubc1 turnover contributes to the spindle assembly checkpoint in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2021; 11:jkab346. [PMID: 34586382 PMCID: PMC8664427 DOI: 10.1093/g3journal/jkab346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
The spindle assembly checkpoint protects the integrity of the genome by ensuring that chromosomes are properly attached to the mitotic spindle before they are segregated during anaphase. Activation of the spindle checkpoint results in inhibition of the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that triggers the metaphase-anaphase transition. Here, we show that levels of Ubc1, an E2 enzyme that functions in complex with the APC, modulate the response to spindle checkpoint activation in Saccharomyces cerevisiae. Overexpression of Ubc1 increased resistance to microtubule poisons, whereas Ubc1 shut-off sensitized cells. We also found that Ubc1 levels are regulated by the spindle checkpoint. Checkpoint activation or direct APC inhibition led to a decrease in Ubc1 levels, charging, and half-life. Additionally, stabilization of Ubc1 prevented its down-regulation by the spindle checkpoint and increased resistance to checkpoint-activating drugs. These results suggest that down-regulation of Ubc1 in response to spindle checkpoint signaling is necessary for a robust cell cycle arrest.
Collapse
Affiliation(s)
- Heather E Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julie M Ghizzoni
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cassandra M Leech
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Franz A, Coscia F, Shen C, Charaoui L, Mann M, Sander C. Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res 2021; 14:140. [PMID: 34686201 PMCID: PMC8539835 DOI: 10.1186/s13048-021-00886-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poly (ADP)-ribose polymerase (PARP) inhibitors have entered routine clinical practice for the treatment of high-grade serous ovarian cancer (HGSOC), yet the molecular mechanisms underlying treatment response to PARP1 inhibition (PARP1i) are not fully understood. METHODS Here, we used unbiased mass spectrometry based proteomics with data-driven protein network analysis to systematically characterize how HGSOC cells respond to PARP1i treatment. RESULTS We found that PARP1i leads to pronounced proteomic changes in a diverse set of cellular processes in HGSOC cancer cells, consistent with transcript changes in an independent perturbation dataset. We interpret decreases in the levels of the pro-proliferative transcription factors SP1 and β-catenin and in growth factor signaling as reflecting the anti-proliferative effect of PARP1i; and the strong activation of pro-survival processes NF-κB signaling and lipid metabolism as PARPi-induced adaptive resistance mechanisms. Based on these observations, we nominate several protein targets for therapeutic inhibition in combination with PARP1i. When tested experimentally, the combination of PARPi with an inhibitor of fatty acid synthase (TVB-2640) has a 3-fold synergistic effect and is therefore of particular pre-clinical interest. CONCLUSION Our study improves the current understanding of PARP1 function, highlights the potential that the anti-tumor efficacy of PARP1i may not only rely on DNA damage repair mechanisms and informs on the rational design of PARP1i combination therapies in ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Franz
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Fabian Coscia
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ciyue Shen
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lea Charaoui
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Mann
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
12
|
Nair RM, Seenivasan A, Liu B, Chen D, Lowe ED, Lorenz S. Reconstitution and Structural Analysis of a HECT Ligase-Ubiquitin Complex via an Activity-Based Probe. ACS Chem Biol 2021; 16:1615-1621. [PMID: 34403242 PMCID: PMC8453484 DOI: 10.1021/acschembio.1c00433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin activity-based probes have proven invaluable in elucidating structural mechanisms in the ubiquitin system by stabilizing transient macromolecular complexes of deubiquitinases, ubiquitin-activating enzymes, and the assemblies of ubiquitin-conjugating enzymes with ubiquitin ligases of the RING-Between-RING and RING-Cysteine-Relay families. Here, we demonstrate that an activity-based probe, ubiquitin-propargylamine, allows for the preparative reconstitution and structural analysis of the interactions between ubiquitin and certain HECT ligases. We present a crystal structure of the ubiquitin-linked HECT domain of HUWE1 that defines a catalytically critical conformation of the C-terminal tail of the ligase for the transfer of ubiquitin to an acceptor protein. Moreover, we observe that ubiquitin-propargylamine displays selectivity among HECT domains, thus corroborating the notion that activity-based probes may provide entry points for the development of specific, active site-directed inhibitors and reporters of HECT ligase activities.
Collapse
Affiliation(s)
- Rahul M. Nair
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | | | - Bing Liu
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Dan Chen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Edward D. Lowe
- Department of Biochemistry, University of Oxford, Oxford, OX13QU, United Kingdom
| | - Sonja Lorenz
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Osborne HC, Irving E, Forment JV, Schmidt CK. E2 enzymes in genome stability: pulling the strings behind the scenes. Trends Cell Biol 2021; 31:628-643. [PMID: 33685796 DOI: 10.1016/j.tcb.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Ubiquitin and ubiquitin-like proteins (UBLs) function as critical post-translational modifiers in the maintenance of genome stability. Ubiquitin/UBL-conjugating enzymes (E2s) are responsible, as part of a wider enzymatic cascade, for transferring single moieties or polychains of ubiquitin/UBLs to one or multiple residues on substrate proteins. Recent advances in structural and mechanistic understanding of how ubiquitin/UBL substrate attachment is orchestrated indicate that E2s can exert control over chain topology, substrate-site specificity, and downstream physiological effects to help maintain genome stability. Drug discovery efforts have typically focussed on modulating other members of the ubiquitin/UBL cascades or the ubiquitin-proteasome system. Here, we review the current standing of E2s in genome stability and revisit their potential as pharmacological targets for developing novel anti-cancer therapies.
Collapse
Affiliation(s)
- Hugh C Osborne
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK
| | - Elsa Irving
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Josep V Forment
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Christine K Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, UK.
| |
Collapse
|
14
|
Bremm A. Hug and hold tight: Dimerization controls the turnover of the ubiquitin-conjugating enzyme UBE2S. Sci Signal 2020; 13:eabd9892. [PMID: 33082290 DOI: 10.1126/scisignal.abd9892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Precise control of the activity and abundance of ubiquitin-conjugating enzymes (E2s) ensures fidelity in ubiquitin chain synthesis. In this issue of Science Signaling, Liess et al. demonstrate that the human anaphase-promoting complex (APC/C)-associated E2 UBE2S adopts an autoinhibited dimeric state that increases the half-life of UBE2S by preventing its autoubiquitination-driven turnover.
Collapse
Affiliation(s)
- Anja Bremm
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|