1
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
2
|
Nádasy GL, Balla A, Dörnyei G, Hunyady L, Szekeres M. Direct Vascular Effects of Angiotensin II (A Systematic Short Review). Int J Mol Sci 2024; 26:113. [PMID: 39795971 PMCID: PMC11719566 DOI: 10.3390/ijms26010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling.
Collapse
Affiliation(s)
- György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (G.L.N.); (A.B.); (L.H.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary;
| |
Collapse
|
3
|
Tóth AD, Turu G, Hunyady L. Functional consequences of spatial, temporal and ligand bias of G protein-coupled receptors. Nat Rev Nephrol 2024; 20:722-741. [PMID: 39039165 DOI: 10.1038/s41581-024-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
G protein-coupled receptors (GPCRs) regulate every aspect of kidney function by mediating the effects of various endogenous and exogenous substances. A key concept in GPCR function is biased signalling, whereby certain ligands may selectively activate specific pathways within the receptor's signalling repertoire. For example, different agonists may induce biased signalling by stabilizing distinct active receptor conformations - a concept that is supported by advances in structural biology. However, the processes underlying functional selectivity in receptor signalling are extremely complex, involving differences in subcellular compartmentalization and signalling dynamics. Importantly, the molecular mechanisms of spatiotemporal bias, particularly its connection to ligand binding kinetics, have been detailed for GPCRs critical to kidney function, such as the AT1 angiotensin receptor (AT1R), V2 vasopressin receptor (V2R) and the parathyroid hormone 1 receptor (PTH1R). This expanding insight into the multifaceted nature of biased signalling paves the way for innovative strategies for targeting GPCR functions; the development of novel biased agonists may represent advanced pharmacotherapeutic approaches to the treatment of kidney diseases and related systemic conditions, such as hypertension, diabetes and heart failure.
Collapse
MESH Headings
- Humans
- Ligands
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/physiology
- Animals
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/physiology
- Kidney Diseases/metabolism
- Kidney/metabolism
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|