1
|
Souza‐Silva IM, Carregari VC, Steckelings UM, Verano‐Braga T. Phosphoproteomics for studying signaling pathways evoked by hormones of the renin-angiotensin system: A source of untapped potential. Acta Physiol (Oxf) 2025; 241:e14280. [PMID: 39821680 PMCID: PMC11737475 DOI: 10.1111/apha.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
The Renin-Angiotensin System (RAS) is a complex neuroendocrine system consisting of a single precursor protein, angiotensinogen (AGT), which is processed into various peptide hormones, including the angiotensins [Ang I, Ang II, Ang III, Ang IV, Ang-(1-9), Ang-(1-7), Ang-(1-5), etc] and Alamandine-related peptides [Ang A, Alamandine, Ala-(1-5)], through intricate enzymatic pathways. Functionally, the RAS is divided into two axes with opposing effects: the classical axis, primarily consisting of Ang II acting through the AT1 receptor (AT1R), and in contrast the protective axis, which includes the receptors Mas, AT2R and MrgD and their respective ligands. A key area of RAS research is to gain a better understanding how signaling cascades elicited by these receptors lead to either "classical" or "protective" effects, as imbalances between the two axes can contribute to disease. On the other hand, therapeutic benefits can be achieved by selectively activating protective receptors and their associated signaling pathways. Traditionally, robust "hypothesis-driven" methods like Western blotting have built a solid knowledge foundation on RAS signaling. In this review, we introduce untargeted mass spectrometry-based phosphoproteomics, a "hypothesis-generating approach", to explore RAS signaling pathways. This technology enables the unbiased discovery of phosphorylation events, offering insights into previously unknown signaling mechanisms. We review the existing studies which used phosphoproteomics to study RAS signaling and discuss potential future applications of phosphoproteomics in RAS research including advantages and limitations. Ultimately, phosphoproteomics represents a so far underused tool for deepening our understanding of RAS signaling and unveiling novel therapeutic targets.
Collapse
Affiliation(s)
- Igor Maciel Souza‐Silva
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Victor Corasolla Carregari
- Laboratório de Neuroproteômica, Instituto de BiologiaUniversidade de CampinasSão PauloBrazil
- Department of Biochemistry and Molecular Biology, Protein Research GroupUniversity of Southern DenmarkOdense MDenmark
| | - U. Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
| | - Thiago Verano‐Braga
- Department of Molecular Medicine, Cardiovascular and Renal Research UnitUniversity of Southern DenmarkOdense MDenmark
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Instituto Nacional de Ciência e Tecnologia Em Nanobiofarmacêutica (INCT‐Nanobiofar)Universidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
2
|
Pham U, Chundi A, Stępniewski TM, Darbha S, Eiger DS, Gazula S, Gardner J, Hicks C, Selent J, Rajagopal S. Location-biased β-arrestin conformations direct GPCR signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614742. [PMID: 39386521 PMCID: PMC11463559 DOI: 10.1101/2024.09.24.614742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
β-arrestins are multifunctional intracellular proteins that regulate the desensitization, internalization and signaling of over 800 different G protein-coupled receptors (GPCRs) and interact with a diverse array of cellular partners1,2. Beyond the plasma membrane, GPCRs can initiate unique signaling cascades from various subcellular locations, a phenomenon known as "location bias"3,4. Here, we investigate how β-arrestins direct location-biased signaling of the angiotensin II type I receptor (AT1R). Using novel bioluminescence resonance energy transfer (BRET) conformational biosensors and extracellular signal-regulated kinase (ERK) activity reporters, we reveal that in response to the endogenous agonist Angiotensin II and the β-arrestin-biased agonist TRV023, β-arrestin 1 and β-arrestin 2 adopt distinct conformations across different subcellular locations, which are intricately linked to differential ERK activation profiles. We also uncover a population of receptor-free catalytically activated β-arrestins in the plasma membrane that exhibits insensitivity to different agonists and promotes ERK activation on the plasma membrane independent of G proteins. These findings deepen our understanding of GPCR signaling complexity and also highlight the nuanced roles of β-arrestins beyond traditional G protein pathways.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anand Chundi
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Tomasz Maciej Stępniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland
| | | | - Dylan Scott Eiger
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Sonia Gazula
- Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Gardner
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chloe Hicks
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|