1
|
Barker RA, Lao-Kaim NP, Guzman NV, Athauda D, Bjartmarz H, Björklund A, Church A, Cutting E, Daft D, Dayal V, Dunnett S, Evans A, Grealish S, Hannaway N, He X, Hewitt S, Kefalopoulou Z, Mahlknecht P, Martín-Bastida A, Farrell K, Moore S, Bulstrode H, Nakornchai T, Nelander-Wahlestedt J, Roupé L, Paul G, Peall K, Rosser A, Roca-Fernández A, Rowlands S, McGorrian AM, Scherf C, Vinh NN, Roberton V, Kelly C, Lelos M, Torres E, Shires K, Hills R, Williams D, Roussakis AA, Sibley K, Tyers P, Wijeyekoon R, Williams-Gray C, Foltynie T, Piccini P, Morris R, Lazic SE, Lindvall O, Parmar M, Widner H. The TransEuro open-label trial of human fetal ventral mesencephalic transplantation in patients with moderate Parkinson's disease. Nat Biotechnol 2025:10.1038/s41587-025-02567-2. [PMID: 40316701 DOI: 10.1038/s41587-025-02567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/17/2025] [Indexed: 05/04/2025]
Abstract
Transplantation of human fetal ventral mesencephalic tissue in individuals with Parkinson's disease has yielded clinical benefits but also side effects, such as graft-induced dyskinesias. The open-label TransEuro trial ( NCT01898390 ) was designed to determine whether this approach could be further developed into a clinically useful treatment. Owing to poor availability of human fetal ventral mesencephalic tissue, only 11 individuals were grafted at two centers using the same tissue preparation protocol but different implantation devices. No overall clinical effect was seen for the primary endpoint 3 years after grafting. No major graft-induced dyskinesias were seen, but we observed differences in outcome related to transplant device and/or site. Mean dopamine uptake improved at 18 months in seven individuals according to [18F]fluorodopa positron emission tomography imaging but was restored to near-normal levels in only one individual. Our findings highlight the need for a stem cell source of dopamine neurons for potential Parkinson's disease cell therapy and provide critical insights into how such clinical studies should be approached.
Collapse
Affiliation(s)
- Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Nicholas P Lao-Kaim
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Natalie Valle Guzman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Dilan Athauda
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Hjalmar Bjartmarz
- Department of Neurosurgery, Skånes University Hospital and Lund University, Lund, Sweden
| | - Anders Björklund
- Department of Neurology, Skånes University Hospital and Lund University, Lund, Sweden
| | - Alistair Church
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Emma Cutting
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Danielle Daft
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Viswas Dayal
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Stephen Dunnett
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Amy Evans
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Shane Grealish
- Department of Neurology, Skånes University Hospital and Lund University, Lund, Sweden
| | - Naomi Hannaway
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sam Hewitt
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zinovia Kefalopoulou
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Philipp Mahlknecht
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | | | - Krista Farrell
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah Moore
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry Bulstrode
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Tagore Nakornchai
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Linnea Roupé
- Department of Neurology, Skånes University Hospital and Lund University, Lund, Sweden
| | - Gesine Paul
- Department of Neurology, Skånes University Hospital and Lund University, Lund, Sweden
| | - Kathryn Peall
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Anne Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Sophie Rowlands
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Anne-Marie McGorrian
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Caroline Scherf
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Ngoc Nga Vinh
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Victoria Roberton
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Claire Kelly
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Mariah Lelos
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Eduardo Torres
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Kate Shires
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Rachel Hills
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Debbie Williams
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | | | - Krista Sibley
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Pamela Tyers
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ruwani Wijeyekoon
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Caroline Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thomas Foltynie
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Paola Piccini
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Robert Morris
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stanley E Lazic
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Olle Lindvall
- Lund Stem Cell Center and Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Parmar
- Department of Neurosurgery, Skånes University Hospital and Lund University, Lund, Sweden
- Lund Stem Cell Center and Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Hakan Widner
- Department of Neurosurgery, Skånes University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
2
|
Sawamoto N, Doi D, Nakanishi E, Sawamura M, Kikuchi T, Yamakado H, Taruno Y, Shima A, Fushimi Y, Okada T, Kikuchi T, Morizane A, Hiramatsu S, Anazawa T, Shindo T, Ueno K, Morita S, Arakawa Y, Nakamoto Y, Miyamoto S, Takahashi R, Takahashi J. Phase I/II trial of iPS-cell-derived dopaminergic cells for Parkinson's disease. Nature 2025; 641:971-977. [PMID: 40240591 PMCID: PMC12095070 DOI: 10.1038/s41586-025-08700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
Parkinson's disease is caused by the loss of dopamine neurons, causing motor symptoms. Initial cell therapies using fetal tissues showed promise but had complications and ethical concerns1-5. Pluripotent stem (PS) cells emerged as a promising alternative for developing safe and effective treatments6. In this phase I/II trial at Kyoto University Hospital, seven patients (ages 50-69) received bilateral transplantation of dopaminergic progenitors derived from induced PS (iPS) cells. Primary outcomes focused on safety and adverse events, while secondary outcomes assessed motor symptom changes and dopamine production for 24 months. There were no serious adverse events, with 73 mild to moderate events. Patients' anti-parkinsonian medication doses were maintained unless therapeutic adjustments were required, resulting in increased dyskinesia. Magnetic resonance imaging showed no graft overgrowth. Among six patients subjected to efficacy evaluation, four showed improvements in the Movement Disorder Society Unified Parkinson's Disease Rating Scale part III OFF score, and five showed improvements in the ON scores. The average changes of all six patients were 9.5 (20.4%) and 4.3 points (35.7%) for the OFF and ON scores, respectively. Hoehn-Yahr stages improved in four patients. Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) influx rate constant (Ki) values in the putamen increased by 44.7%, with higher increases in the high-dose group. Other measures showed minimal changes. This trial (jRCT2090220384) demonstrated that allogeneic iPS-cell-derived dopaminergic progenitors survived, produced dopamine and did not form tumours, therefore suggesting safety and potential clinical benefits for Parkinson's disease.
Collapse
Affiliation(s)
- Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Shima
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohisa Okada
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Satoe Hiramatsu
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takayuki Anazawa
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Ueno
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Takahashi R, Nakanishi E, Yamakado H, Sawamoto N, Takahashi J. Allogenic transplantation therapy of iPS cell-derived dopamine progenitors for Parkinson's disease -Current status of the Kyoto Trial and future perspectives. Parkinsonism Relat Disord 2025:107833. [PMID: 40307147 DOI: 10.1016/j.parkreldis.2025.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Transplantation therapy using induced pluripotent stem cell (iPS) cell-derived dopamine (DA) progenitors for Parkinson's disease (PD) has attracted attention as an innovative treatment to restore DA neurons in PD, which leads to the improvement of motor disturbance. iPS cells are multipotent stem cells with very high proliferation activity, created by reprogramming mature somatic cells through the transduction of four transcription factors. Relative to fetal midbrain DA neurons, iPS cells have advantages in terms of ethical aspects and availability. On the other hand, the most serious concern associated with therapies with ES/iPS cells is the risk of tumor growth that is caused by the proliferation of undifferentiated ES/iPS cells. Human ES cells that differentiate into DA neurons have been shown to form teratomas. Another concern is graft-induced dyskinesia (GID). GID, which is likely caused by several factors including contamination with serotonergic neurons, developed in the recipients of fetal ventral midbrain (VM) in randomized controlled trials. To enrich the DA progenitor cells and eliminate unwanted cells, a protocol for sorting midbrain DA neurons with antibodies against CORIN, a marker for floor plates, was developed. CORIN-sorted dopamine progenitors were transplanted into the bilateral putamina of MPTP-treated Parkinson models of cynomolgus monkeys, resulting in 18F-DOPA PET-positive graft formation and motor improvement without tumor formation two years after the surgeries. Very recently, a phase I/II trial of iPSC-derived, CORIN-sorted dopaminergic cells for Parkinson's disease was completed (The Kyoto Trial) (Takahashi, 2020; Sawamoto et al., 2025) [1,2]. Based on the results of the trial, we would like to discuss the current status and future perspectives of iPS cell therapy for PD.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Kyoto University Office of Research Acceleration, Kyoto, Japan.
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto, Japan
| |
Collapse
|
4
|
Takahashi J. iPSC-based cell replacement therapy: from basic research to clinical application. Cytotherapy 2025:S1465-3249(25)00053-2. [PMID: 39969437 DOI: 10.1016/j.jcyt.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
The advancement of induced pluripotent stem cell (iPSC) technology has revolutionized regenerative medicine, enabling breakthroughs in disease modeling, drug discovery, and cell replacement therapies. This review examines the progression of iPSC-based regenerative medicine, focusing on cell replacement therapy and mechanisms like the Replacement Effect, which is crucial for long-term tissue regeneration. Using Parkinson's disease as a key example, it discusses the induction of midbrain dopaminergic neurons from iPSCs and the importance of precise signaling for safety and efficacy. By demonstrating the integration and safety of these cells, animal studies have paved the way for clinical trials. This review highlights the need for strategic collaboration among stakeholders-regulatory authorities, research and medical staff, and industry-to ensure successful clinical applications. iPSC technology's ongoing evolution holds significant promise for broader therapeutic applications and improved patient outcomes.
Collapse
Affiliation(s)
- Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Sharma R, Kour A, Dewangan HK. Enhancements in Parkinson's Disease Management: Leveraging Levodopa Optimization and Surgical Breakthroughs. Curr Drug Targets 2025; 26:17-32. [PMID: 39350551 DOI: 10.2174/0113894501319817240919103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 02/19/2025]
Abstract
Parkinson's disease (PD) is a complex neurological condition caused due to inheritance, environment, and behavior among various other parameters. The onset, diagnosis, course of therapy, and future of PD are thoroughly examined in this comprehensive review. This review also presents insights into pathogenic mechanisms of reactive microgliosis, Lewy bodies, and their functions in the evolution of PD. It addresses interaction complexity with genetic mutations, especially in genes such as UCH-L1, parkin, and α-synuclein, which illuminates changes in the manner dopaminergic cells handle proteins and use proteases. This raises the improved outcomes and life quality for those with PD. Potential treatments for severe PD include new surgical methods like Deep Brain Stimulation (DBS). Further, exploration of non-motor manifestations, such as cognitive impairment, autonomic dysfunction, and others, is covered in this review article. These symptoms have a significant impact on patients' quality of life. Furthermore, one of the emerging therapeutic routes that are being investigated is neuroprotective medicines that aim to prevent the aggregation of α-synuclein and interventions that modify the progression of diseases. The review concludes by stressing the dynamic nature of PD research and the potential game-changing impact of precision medicines on current approaches to therapy.
Collapse
Affiliation(s)
- Ritika Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Avneet Kour
- Chitkara College of Pharmacy, Chitkara University, Punjab-140401, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
6
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Mercado NM, Szarowicz C, Stancati JA, Sortwell CE, Boezwinkle SA, Collier TJ, Caulfield ME, Steece-Collier K. Advancing age and the rs6265 BDNF SNP are permissive to graft-induced dyskinesias in parkinsonian rats. NPJ Parkinsons Dis 2024; 10:163. [PMID: 39179609 PMCID: PMC11344059 DOI: 10.1038/s41531-024-00771-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
The rs6265 single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor is a common variant that alters therapeutic outcomes for individuals with Parkinson's disease (PD). We previously investigated the effects of this SNP on the experimental therapeutic approach of neural grafting, demonstrating that young adult parkinsonian rats carrying the variant Met allele exhibited enhanced graft function compared to wild-type rats and also exclusively developed aberrant graft-induced dyskinesias (GID). Aging is the primary risk factor for PD and reduces graft efficacy. Here we investigated whether aging interacts with this SNP to further alter cell transplantation outcomes. We hypothesized that aging would reduce enhancement of graft function associated with this genetic variant and exacerbate GID in all grafted subjects. Unexpectedly, beneficial graft function was maintained in aged rs6265 subjects. However, aging was permissive to GID induction, regardless of genotype, with the greatest incidence and severity found in rs6265-expressing animals.
Collapse
Affiliation(s)
- Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Carlye Szarowicz
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Samuel A Boezwinkle
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA
| | - Margaret E Caulfield
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
8
|
Kim TW, Koo SY, Riessland M, Chaudhry F, Kolisnyk B, Cho HS, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NF-κB-p53 axis restricts in vivo survival of hPSC-derived dopamine neurons. Cell 2024; 187:3671-3689.e23. [PMID: 38866017 PMCID: PMC11641762 DOI: 10.1016/j.cell.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.
Collapse
Affiliation(s)
- Tae Wan Kim
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - So Yeon Koo
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fayzan Chaudhry
- Tri-Institutional PhD program in Computational Biology, New York, NY, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hyein S Cho
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Marco Vincenzo Russo
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
9
|
Cardinale A, de Iure A, Picconi B. Neuroinflammation and Dyskinesia: A Possible Causative Relationship? Brain Sci 2024; 14:514. [PMID: 38790492 PMCID: PMC11118841 DOI: 10.3390/brainsci14050514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
Levodopa (L-DOPA) treatment represents the gold standard therapy for Parkinson's disease (PD) patients. L-DOPA therapy shows many side effects, among them, L-DOPA-induced dyskinesias (LIDs) remain the most problematic. Several are the mechanisms underlying these processes: abnormal corticostriatal neurotransmission, pre- and post-synaptic neuronal events, changes in gene expression, and altered plasticity. In recent years, researchers have also suggested non-neuronal mechanisms as a possible cause for LIDs. We reviewed recent clinical and pre-clinical studies on neuroinflammation contribution to LIDs. Microglia and astrocytes seem to play a strategic role in LIDs phenomenon. In particular, their inflammatory response affects neuron-glia communication, synaptic activity and neuroplasticity, contributing to LIDs development. Finally, we describe possible new therapeutic interventions for dyskinesia prevention targeting glia cells.
Collapse
Affiliation(s)
- Antonella Cardinale
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Antonio de Iure
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Roma, 00166 Rome, Italy; (A.C.); (A.d.I.)
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele, 00166 Rome, Italy
| |
Collapse
|
10
|
Lindvall O. History of cellular grafting for central nervous system repair-A clinical perspective. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:15-40. [PMID: 39341652 DOI: 10.1016/b978-0-323-90120-8.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
As late as in the 1970s, the evidence supporting that brain function might be restored by replacing dead cells by transplantation of new healthy cells was scarce in experimental animals and lacking in humans. Repairing the human brain was regarded as completely unrealistic by clinicians. Fifty years later, the situation is very different, and cellular grafting has reached patient application in several conditions affecting the CNS. The clinical studies performed so far have shown that cellular grafts can survive, grow, and function also in the diseased adult human brain. However, no proven treatment based on cell transplantation is currently available for any brain disorder. Here, the history of cellular grafting is described from a clinical perspective, including some of the preclinical work that has formed the basis for its translation to patient application. The focus is on cell transplantation for Parkinson disease, which in many ways is paving the way for this field of research. The chapter gives an account of the scientific milestones, the ups and downs, as well as the positive and negative reactions from the scientific and clinical community, and how this research field despite many obstacles has continued to move forward over more than four decades.
Collapse
Affiliation(s)
- Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
11
|
Barker RA, Buttery PC. Disease-specific interventions: The use of cell and gene therapies for Parkinson disease. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:171-191. [PMID: 39341654 DOI: 10.1016/b978-0-323-90120-8.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Approaches to repair the brain around the loss of the nigrostriatal dopaminergic pathways in Parkinson disease (PD) are not new and have been attempted over many years. However, of late, the situation has moved forward in two main ways. In the case of cell therapies, the ability to make large numbers of authentic midbrain dopaminergic neuroblasts from human pluripotent stem cell sources has turned what was an interesting avenue of research into a major area of investment and trialing, by academics in conjunction with Pharma. In the case of gene therapies, their use around dopamine replacement has waned, as the interest in using them for disease modification targeting PD-specific pathways has grown. In this chapter, we discuss all these developments and the current status of cell and gene therapies for PD.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| | - Philip C Buttery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Kirkeby A, Nelander J, Hoban DB, Rogelius N, Bjartmarz H, Storm P, Fiorenzano A, Adler AF, Vale S, Mudannayake J, Zhang Y, Cardoso T, Mattsson B, Landau AM, Glud AN, Sørensen JC, Lillethorup TP, Lowdell M, Carvalho C, Bain O, van Vliet T, Lindvall O, Björklund A, Harry B, Cutting E, Widner H, Paul G, Barker RA, Parmar M. Preclinical quality, safety, and efficacy of a human embryonic stem cell-derived product for the treatment of Parkinson's disease, STEM-PD. Cell Stem Cell 2023; 30:1299-1314.e9. [PMID: 37802036 DOI: 10.1016/j.stem.2023.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Cell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements. Importantly, no adverse effects were observed upon testing of the product in a 39-week rat GLP safety study for toxicity, tumorigenicity, and biodistribution, and a non-GLP efficacy study confirmed that the transplanted cells mediated full functional recovery in a pre-clinical rat model of PD. We further observed highly comparable efficacy results between two different GMP batches, verifying that the product can be serially manufactured. A fully in vivo-tested batch of STEM-PD is now being used in a clinical trial of 8 patients with moderate PD, initiated in 2022.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Jenny Nelander
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Deirdre B Hoban
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Nina Rogelius
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Hjálmar Bjartmarz
- Department of Neurosurgery, Skåne University Hospital, 221 85 Lund, Sweden
| | - Petter Storm
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Alessandro Fiorenzano
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andrew F Adler
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Shelby Vale
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Janitha Mudannayake
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Yu Zhang
- Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden; Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Bengt Mattsson
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Anne M Landau
- Department of Nuclear Medicine & PET-Center and Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jens C Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine & PET-Center and Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Mark Lowdell
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free NHS Foundation Trust, Royal Free Hospital, London NW3 2QG, UK
| | - Carla Carvalho
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free NHS Foundation Trust, Royal Free Hospital, London NW3 2QG, UK
| | - Owen Bain
- Centre for Cell, Gene and Tissue Therapeutics, Royal Free NHS Foundation Trust, Royal Free Hospital, London NW3 2QG, UK
| | | | - Olle Lindvall
- Lund Stem Cell Center and Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden
| | - Anders Björklund
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Bronwen Harry
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Emma Cutting
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Håkan Widner
- Department of Neurology, Skåne University Hospital, 221 85 Lund, Sweden
| | - Gesine Paul
- Department of Neurology, Skåne University Hospital, 221 85 Lund, Sweden; Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden
| | - Roger A Barker
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Malin Parmar
- Wallenberg Neuroscience Center, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
14
|
Naderi S, Shiri Z, Zarei-Kheirabadi M, Mollamohammadi S, Hosseini P, Rahimi G, Moradmand A, Samadian A, Shojaei A, Yeganeh M, Mousavi SA, Badri M, Taei A, Hassani SN, Baharvand H. Cryopreserved clinical-grade human embryonic stem cell-derived dopaminergic progenitors function in Parkinson's disease models. Life Sci 2023; 329:121990. [PMID: 37524159 DOI: 10.1016/j.lfs.2023.121990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
AIM Parkinson's Disease (PD) is a common age-related neurodegenerative disorder with a rising prevalence. Human pluripotent stem cells have emerged as the most promising source of cells for midbrain dopaminergic (mDA) neuron replacement in PD. This study aimed to generate transplantable mDA progenitors for treatment of PD. MATERIALS AND METHODS Here, we optimized and fine-tuned a differentiation protocol using a combination of small molecules and growth factors to induce mDA progenitors to comply with good manufacturing practice (GMP) guidelines based on our clinical-grade human embryonic stem cell (hESC) line. KEY FINDINGS The resulting mDA progenitors demonstrated robust differentiation and functional properties in vitro. Moreover, cryopreserved mDA progenitors were transplanted into 6-hydroxydopamine-lesioned rats, leading to functional recovery. SIGNIFICANCE We demonstrate that our optimized protocol using a clinical hESC line is suitable for generating clinical-grade mDA progenitors and provides the ground work for future translational applications.
Collapse
Affiliation(s)
- Somayeh Naderi
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Shiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Zarei-Kheirabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parastoo Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Golnoosh Rahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azam Samadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Meghdad Yeganeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Motahare Badri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
15
|
Wang F, Sun Z, Peng D, Gianchandani S, Le W, Boltze J, Li S. Cell-therapy for Parkinson's disease: a systematic review and meta-analysis. J Transl Med 2023; 21:601. [PMID: 37679754 PMCID: PMC10483810 DOI: 10.1186/s12967-023-04484-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cell-based strategies focusing on replacement or protection of dopaminergic neurons have been considered as a potential approach to treat Parkinson's disease (PD) for decades. However, despite promising preclinical results, clinical trials on cell-therapy for PD reported mixed outcomes and a thorough synthesis of these findings is lacking. We performed a systematic review and meta-analysis to evaluate cell-therapy for PD patients. METHODS We systematically identified all clinical trials investigating cell- or tissue-based therapies for PD published before July 2023. Out of those, studies reporting transplantation of homogenous cells (containing one cell type) were included in meta-analysis. The mean difference or standardized mean difference in quantitative neurological scale scores before and after cell-therapy was analyzed to evaluate treatment effects. RESULTS The systematic literature search revealed 106 articles. Eleven studies reporting data from 11 independent trials (210 patients) were eligible for meta-analysis. Disease severity and motor function evaluation indicated beneficial effects of homogenous cell-therapy in the 'off' state at 3-, 6-, 12-, or 24-month follow-ups, and for motor function even after 36 months. Most of the patients were levodopa responders (61.6-100% in different follow-ups). Cell-therapy was also effective in improving the daily living activities in the 'off' state of PD patients. Cells from diverse sources were used and multiple transplantation modes were applied. Autografts did not improve functional outcomes, while allografts exhibited beneficial effects. Encouragingly, both transplantation into basal ganglia and to areas outside the basal ganglia were effective to reduce disease severity. Some trials reported adverse events potentially related to the surgical procedure. One confirmed and four possible cases of graft-induced dyskinesia were reported in two trials included in this meta-analysis. CONCLUSIONS This meta-analysis provides preliminary evidence for the beneficial effects of homogenous cell-therapy for PD, potentially to the levodopa responders. Allogeneic cells were superior to autologous cells, and the effective transplantation sites are not limited to the basal ganglia. PROSPERO registration number: CRD42022369760.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengwu Sun
- Department of Clinical Pharmacy, Central Hospital of Dalian University of Technology, Dalian, China
| | - Daoyong Peng
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Shikha Gianchandani
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial Hospital, Chengdu, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Beijing, 100038, China.
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Fan Y, Goh ELK, Chan JKY. Neural Cells for Neurodegenerative Diseases in Clinical Trials. Stem Cells Transl Med 2023; 12:510-526. [PMID: 37487111 PMCID: PMC10427968 DOI: 10.1093/stcltm/szad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/11/2023] [Indexed: 07/26/2023] Open
Abstract
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases. They include neural, mesenchymal and hemopoietic stem cells, and neural cells derived from embryonic stem cells and induced pluripotent stem cells. In this review, we present the list of cellular therapies for ND comprising 33 trials that used neural stem progenitors, 8 that used differentiated neural cells ,and 109 trials that involved non-neural cells in the 7 ND. Encouraging results have been shown in a few early-phase clinical trials that require further investigations in a randomized setting. However, such definitive trials may not be possible given the relative cost of the trials, and in the setting of rare diseases.
Collapse
Affiliation(s)
- Yiping Fan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Eyleen L K Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
17
|
Nakamura R, Nonaka R, Oyama G, Jo T, Kamo H, Nuermaimaiti M, Akamatsu W, Ishikawa KI, Hattori N. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson's disease. Front Neurosci 2023; 17:1202027. [PMID: 37502682 PMCID: PMC10368972 DOI: 10.3389/fnins.2023.1202027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor functions; it is caused by the loss of midbrain dopaminergic (mDA) neurons. The therapeutic effects of transplanting human-induced pluripotent stem cell (iPSC)-derived mDA neural progenitor cells in animal PD models are known and are being evaluated in an ongoing clinical trial. However, However, improvements in the safety and efficiency of differentiation-inducing methods are crucial for providing a larger scale of cell therapy studies. This study aimed to investigate the usefulness of dopaminergic progenitor cells derived from human iPSCs by our previously reported method, which promotes differentiation and neuronal maturation by treating iPSCs with three inhibitors at the start of induction. Methods Healthy subject-derived iPS cells were induced into mDA progenitor cells by the CTraS-mediated method we previously reported, and their proprieties and dopaminergic differentiation efficiency were examined in vitro. Then, the induced mDA progenitors were transplanted into 6-hydroxydopamine-lesioned PD model mice, and their efficacy in improving motor function, cell viability, and differentiation ability in vivo was evaluated for 16 weeks. Results Approximately ≥80% of cells induced by this method without sorting expressed mDA progenitor markers and differentiated primarily into A9 dopaminergic neurons in vitro. After transplantation in 6-hydroxydopamine-lesioned PD model mice, more than 90% of the engrafted cells differentiated into the lineage of mDA neurons, and approximately 15% developed into mature mDA neurons without tumour formation. The grafted PD model mice also demonstrated significantly improved motor functions. Conclusion This study suggests that the differentiation protocol for the preparation of mDA progenitors is a promising option for cell therapy in patients with PD.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Risa Nonaka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takayuki Jo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hikaru Kamo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Maierdanjiang Nuermaimaiti
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
18
|
Rájová J, Davidsson M, Avallone M, Hartnor M, Aldrin-Kirk P, Cardoso T, Nolbrant S, Mollbrink A, Storm P, Heuer A, Parmar M, Björklund T. Deconvolution of spatial sequencing provides accurate characterization of hESC-derived DA transplants in vivo. Mol Ther Methods Clin Dev 2023; 29:381-394. [PMID: 37251982 PMCID: PMC10209706 DOI: 10.1016/j.omtm.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.
Collapse
Affiliation(s)
- Jana Rájová
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Martino Avallone
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Morgan Hartnor
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Patrick Aldrin-Kirk
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tiago Cardoso
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Division of Gene Technology, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
19
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
20
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
21
|
Pinna A, Parekh P, Morelli M. Serotonin 5-HT 1A receptors and their interactions with adenosine A 2A receptors in Parkinson's disease and dyskinesia. Neuropharmacology 2023; 226:109411. [PMID: 36608814 DOI: 10.1016/j.neuropharm.2023.109411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The dopamine neuronal loss that characterizes Parkinson's Disease (PD) is associated to changes in neurotransmitters, such as serotonin and adenosine, which contribute to the symptomatology of PD and to the onset of dyskinetic movements associated to levodopa treatment. The present review describes the role played by serotonin 5-HT1A receptors and the adenosine A2A receptors on dyskinetic movements induced by chronic levodopa in PD. The focus is on preclinical and clinical results showing the interaction between serotonin 5-HT1A receptors and other receptors such as 5-HT1B receptors and adenosine A2A receptors. 5-HT1A/1B receptor agonists and A2A receptor antagonists, administered in combination, contrast dyskinetic movements induced by chronic levodopa without impairing motor behaviour, suggesting that this drug combination might be a useful therapeutic approach for counteracting the PD motor deficits and dyskinesia associated with chronic levodopa treatment. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
Affiliation(s)
- Annalisa Pinna
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| | - Pathik Parekh
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy
| | - Micaela Morelli
- National Research Council of Italy, Neuroscience Institute, UOS of Cagliari, c/o Department of Biomedical Sciences, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato (CA), Italy.
| |
Collapse
|
22
|
Budrow C, Elder K, Coyle M, Centner A, Lipari N, Cohen S, Glinski J, Kinzonzi N, Wheelis E, McManus G, Manfredsson F, Bishop C. Broad Serotonergic Actions of Vortioxetine as a Promising Avenue for the Treatment of L-DOPA-Induced Dyskinesia. Cells 2023; 12:837. [PMID: 36980178 PMCID: PMC10047495 DOI: 10.3390/cells12060837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by motor symptoms that result from loss of nigrostriatal dopamine (DA) cells. While L-DOPA provides symptom alleviation, its chronic use often results in the development of L-DOPA-induced dyskinesia (LID). Evidence suggests that neuroplasticity within the serotonin (5-HT) system contributes to LID onset, persistence, and severity. This has been supported by research showing 5-HT compounds targeting 5-HT1A/1B receptors and/or the 5-HT transporter (SERT) can reduce LID. Recently, vortioxetine, a multimodal 5-HT compound developed for depression, demonstrated acute anti-dyskinetic effects. However, the durability and underlying pharmacology of vortioxetine's anti-dyskinetic actions have yet to be delineated. To address these gaps, we used hemiparkinsonian rats in Experiment 1, examining the effects of sub-chronic vortioxetine on established LID and motor performance. In Experiment 2, we applied the 5-HT1A antagonist WAY-100635 or 5-HT1B antagonist SB-224289 in conjunction with L-DOPA and vortioxetine to determine the contributions of each receptor to vortioxetine's effects. The results revealed that vortioxetine consistently and dose-dependently attenuated LID while independently, 5-HT1A and 5-HT1B receptors each partially reversed vortioxetine's effects. Such findings further support the promise of pharmacological strategies, such as vortioxetine, and indicate that broad 5-HT actions may provide durable responses without significant side effects.
Collapse
Affiliation(s)
- Carla Budrow
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Kayla Elder
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Ashley Centner
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Natalie Lipari
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Sophie Cohen
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - John Glinski
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - N’Senga Kinzonzi
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Emily Wheelis
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Grace McManus
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| | - Fredric Manfredsson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA; (C.B.)
| |
Collapse
|
23
|
Morizane A. Cell therapy for Parkinson's disease with induced pluripotent stem cells. Inflamm Regen 2023; 43:16. [PMID: 36843101 PMCID: PMC9969678 DOI: 10.1186/s41232-023-00269-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and a prime target of cell therapies. In fact, aborted fetal tissue has been used as donor material for such therapies since the 1980s. These cell therapies, however, suffer from several problems, such as a short supply of donor materials, quality instability of the tissues, and ethical restrictions. The advancement of stem cell technologies has enabled the production of donor cells from pluripotent stem cells with unlimited scale, stable quality, and less ethical problems. Several research groups have established protocols to induce dopamine neural progenitors from pluripotent stem cells in a clinically compatible manner and confirmed efficacy and safety in non-clinical studies. Based on the results from these non-clinical studies, several clinical trials of pluripotent stem cell-based therapies for PD have begun. In the context of immune rejection, there are several modes of stem cell-based therapies: autologous transplantation, allogeneic transplantation without human leukocyte antigen-matching, and allogeneic transplantation with matching. In this mini-review, several practical points of stem cell-based therapies for PD are discussed.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
24
|
Barker RA, Björklund A. Restorative cell and gene therapies for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:211-226. [PMID: 36803812 DOI: 10.1016/b978-0-323-85555-6.00012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
One of the core pathological features of Parkinson's disease (PD) is the loss of the dopaminergic nigrostriatal pathway which lies at the heart of many of the motor features of this condition as well as some of the cognitive problems. The importance of this pathological event is evident through the clinical benefits that are seen when patients with PD are treated with dopaminergic agents, at least in early-stage disease. However, these agents create problems of their own through stimulation of more intact dopaminergic networks within the central nervous system causing major neuropsychiatric problems including dopamine dysregulation. In addition, over time the nonphysiological stimulation of striatal dopamine receptors by l-dopa containing drugs leads to the genesis of l-dopa-induced dyskinesias that can become very disabling in many cases. As such, there has been much interest in trying to better reconstitute the dopaminergic nigrostriatal pathway using either factors to regrow it, cells to replace it, or gene therapies to restore dopamine transmission in the striatum. In this chapter, we lay out the rationale, history and current status of these different therapies as well as highlighting where the field is heading and what new interventions might come to clinic in the coming years.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience, Cambridge Centre for Brain Repair, Cambridge, United Kingdom.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Tchekalarova J, Tzoneva R. Oxidative Stress and Aging as Risk Factors for Alzheimer's Disease and Parkinson's Disease: The Role of the Antioxidant Melatonin. Int J Mol Sci 2023; 24:3022. [PMID: 36769340 PMCID: PMC9917989 DOI: 10.3390/ijms24033022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Aging and neurodegenerative diseases share common hallmarks, including mitochondrial dysfunction and protein aggregation. Moreover, one of the major issues of the demographic crisis today is related to the progressive rise in costs for care and maintenance of the standard living condition of aged patients with neurodegenerative diseases. There is a divergence in the etiology of neurodegenerative diseases. Still, a disturbed endogenous pro-oxidants/antioxidants balance is considered the crucial detrimental factor that makes the brain vulnerable to aging and progressive neurodegeneration. The present review focuses on the complex relationships between oxidative stress, autophagy, and the two of the most frequent neurodegenerative diseases associated with aging, Alzheimer's disease (AD) and Parkinson's disease (PD). Most of the available data support the hypothesis that a disturbed antioxidant defense system is a prerequisite for developing pathogenesis and clinical symptoms of ADs and PD. Furthermore, the release of the endogenous hormone melatonin from the pineal gland progressively diminishes with aging, and people's susceptibility to these diseases increases with age. Elucidation of the underlying mechanisms involved in deleterious conditions predisposing to neurodegeneration in aging, including the diminished role of melatonin, is important for elaborating precise treatment strategies for the pathogenesis of AD and PD.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 23, 1113 Sofia, Bulgaria
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Block 21, 1113 Sofia, Bulgaria
| |
Collapse
|
26
|
Rodríguez-Pallares J, Labandeira-García J, García-Garrote M, Parga J. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen Res 2023; 18:478-484. [DOI: 10.4103/1673-5374.350193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Cha Y, Park TY, Leblanc P, Kim KS. Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson's Disease. J Mov Disord 2023; 16:22-41. [PMID: 36628428 PMCID: PMC9978267 DOI: 10.14802/jmd.22141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Tae-Yoon Park
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
28
|
Characterization of Human-Induced Neural Stem Cells and Derivatives following Transplantation into the Central Nervous System of a Nonhuman Primate and Rats. Stem Cells Int 2022; 2022:1396735. [PMID: 36618021 PMCID: PMC9812602 DOI: 10.1155/2022/1396735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
Neural stem cells (NSCs) and derivatives are potential cellular sources to treat neurological diseases. In the current study, we reprogrammed human peripheral blood mononuclear cells into induced NSCs (iNSCs) and inserted GFP gene into the AAVS1 site for graft tracing. Targeted integration of GFP does not affect the proliferation and differentiation capacity of iNSCs. iNSC-GFP can be further differentiated into dopaminergic precursors (DAPs) and motor neuron precursors (MNPs), respectively. iNSCs were engrafted into the motor cortex and iNSC-DAPs into the striatum and substantia nigra (SN) of a nonhuman primate, respectively. The surviving iNSCs could respond to the microenvironment of the cortex and spontaneously differentiate into mature neurons that extended neurites. iNSC-DAPs survived well and matured into DA neurons following transplantation into the striatum and SN. iNSC-MNPs could also survive and turn into motor neurons after being engrafted into the spinal cord of rats. The results suggest that iNSCs and derivatives have a potential to be used for the treatment of neurological diseases.
Collapse
|
29
|
Levodopa-Induced Dyskinesia in Parkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022; 11:cells11233736. [PMID: 36496996 PMCID: PMC9736114 DOI: 10.3390/cells11233736] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The most commonly used treatment for Parkinson's disease (PD) is levodopa, prescribed in conjunction with carbidopa. Virtually all patients with PD undergo dopamine replacement therapy using levodopa during the course of the disease's progression. However, despite the fact that levodopa is the "gold standard" in PD treatments and has the ability to significantly alleviate PD symptoms, it comes with side effects in advanced PD. Levodopa replacement therapy remains the current clinical treatment of choice for Parkinson's patients, but approximately 80% of the treated PD patients develop levodopa-induced dyskinesia (LID) in the advanced stages of the disease. A better understanding of the pathological mechanisms of LID and possible means of improvement would significantly improve the outcome of PD patients, reduce the complexity of medication use, and lower adverse effects, thus, improving the quality of life of patients and prolonging their life cycle. This review assesses the recent advancements in understanding the underlying mechanisms of LID and the therapeutic management options available after the emergence of LID in patients. We summarized the pathogenesis and the new treatments for LID-related PD and concluded that targeting pathways other than the dopaminergic pathway to treat LID has become a new possibility, and, currently, amantadine, drugs targeting 5-hydroxytryptamine receptors, and surgery for PD can target the Parkinson's symptoms caused by LID.
Collapse
|
30
|
Lane EL, Lelos MJ. Defining the unknowns for cell therapies in Parkinson's disease. Dis Model Mech 2022; 15:dmm049543. [PMID: 36165848 PMCID: PMC9555765 DOI: 10.1242/dmm.049543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
First-in-human clinical trials have commenced to test the safety and efficacy of cell therapies for people with Parkinson's disease (PD). Proof of concept that this neural repair strategy is efficacious is based on decades of preclinical studies and clinical trials using primary foetal cells, as well as a significant literature exploring more novel stem cell-derived products. Although several measures of efficacy have been explored, including the successful in vitro differentiation of stem cells to dopamine neurons and consistent alleviation of motor dysfunction in rodent models, many unknowns still remain regarding the long-term clinical implications of this treatment strategy. Here, we consider some of these outstanding questions, including our understanding of the interaction between anti-Parkinsonian medication and the neural transplant, the impact of the cell therapy on cognitive or neuropsychiatric symptoms of PD, the role of neuroinflammation in the therapeutic process and the development of graft-induced dyskinesias. We identify questions that are currently pertinent to the field that require further exploration, and pave the way for a more holistic understanding of this neural repair strategy for treatment of PD.
Collapse
Affiliation(s)
- Emma L. Lane
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, UK
| | - Mariah J. Lelos
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
31
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
32
|
Xu P, He H, Gao Q, Zhou Y, Wu Z, Zhang X, Sun L, Hu G, Guan Q, You Z, Zhang X, Zheng W, Xiong M, Chen Y. Human midbrain dopaminergic neuronal differentiation markers predict cell therapy outcome in a Parkinson's disease model. J Clin Invest 2022; 132:156768. [PMID: 35700056 PMCID: PMC9282930 DOI: 10.1172/jci156768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-based replacement therapy holds great promise in treating Parkinson's disease (PD). However, the heterogeneity of hPSC-derived donor cells and the low yield of midbrain dopaminergic (mDA) neurons after transplantation hinder its broad clinical application. Here, we depicted the single-cell molecular landscape during mDA neuron differentiation. We found that this process recapitulated the development of multiple but adjacent fetal brain regions including ventral midbrain, isthmus, and ventral hindbrain, resulting in heterogenous donor cell population. We reconstructed the differentiation trajectory of mDA lineage and identified CLSTN2 and PTPRO as specific surface markers of mDA progenitors, which were predictive of mDA neuron differentiation and could facilitate highly enriched mDA neurons (up to 80%) following progenitor sorting and transplantation. Marker sorted progenitors exhibited higher therapeutic potency in correcting motor deficits of PD mice. Different marker sorted grafts had a strikingly consistent cellular composition, in which mDA neurons were enriched, while off-target neuron types were mostly depleted, suggesting stable graft outcomes. Our study provides a better understanding of cellular heterogeneity during mDA neuron differentiation, and establishes a strategy to generate highly purified donor cells to achieve stable and predictable therapeutic outcomes, raising the prospect of hPSC-based PD cell replacement therapies.
Collapse
Affiliation(s)
- Peibo Xu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hui He
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qinqin Gao
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Zhou
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyan Wu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Zhang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Linyu Sun
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gang Hu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qian Guan
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen You
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenping Zheng
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Man Xiong
- Institute State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuejun Chen
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Wilson H, de Natale ER, Politis M. Concise Review: Recent advances in neuroimaging techniques to assist clinical trials on cell-based therapies in neurodegenerative diseases. Stem Cells 2022; 40:724-735. [PMID: 35671344 DOI: 10.1093/stmcls/sxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/14/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are progressive disorders for which a curative therapy is still lacking. Cell-based therapy aims at replacing dysfunctional cellular populations by repairing damaged tissue and by enriching the microenvironment of selective brain areas, and thus constitutes a promising disease-modifying treatment of neurodegenerative diseases. Scientific research has engineered a wide range of human-derived cellular populations to help overcome some of the logistical, safety, and ethical issues associated with this approach. Open-label studies and clinical trials in human participants have employed neuroimaging techniques, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), to assess the success of the transplantation, to evaluate the functional integration of the implanted tissue into the host environment and to understand the pathophysiological changes associated with the therapy. Neuroimaging has constituted an outcome measure of large, randomized clinical trials, and has given answers to clarify the pathophysiology underlying some of the complications linked with this therapy. Novel PET radiotracers and MRI sequences for the staging of neurodegenerative diseases and to study alterations at molecular level significantly expands the translational potential of neuroimaging to assist pre-clinical and clinical research on cell-based therapy in these disorders. This concise review summarizes the current use of neuroimaging in human studies of cell-based replacement therapy and focuses on future application of PET and MRI techniques to evaluate the pathophysiology and treatment efficacy, as well as to aid patient selection and as an outcome measure to improve treatment success.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| | | | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK
| |
Collapse
|
34
|
Brot S, Thamrin NP, Bonnet ML, Francheteau M, Patrigeon M, Belnoue L, Gaillard A. Long-Term Evaluation of Intranigral Transplantation of Human iPSC-Derived Dopamine Neurons in a Parkinson's Disease Mouse Model. Cells 2022; 11:cells11101596. [PMID: 35626637 PMCID: PMC9140181 DOI: 10.3390/cells11101596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). One strategy for treating PD is transplantation of DA neuroblasts. Significant advances have been made in generating midbrain DA neurons from human pluripotent stem cells. Before these cells can be routinely used in clinical trials, extensive preclinical safety studies are required. One of the main issues to be addressed is the long-term therapeutic effectiveness of these cells. In most transplantation studies using human cells, the maturation of DA neurons has been analyzed over a relatively short period not exceeding 6 months. In present study, we generated midbrain DA neurons from human induced pluripotent stem cells (hiPSCs) and grafted these neurons into the SNpc in an animal model of PD. Graft survival and maturation were analyzed from 1 to 12 months post-transplantation (mpt). We observed long-term survival and functionality of the grafted neurons. However, at 12 mpt, we observed a decrease in the proportion of SNpc DA neuron subtype compared with that at 6 mpt. In addition, at 12 mpt, grafts still contained immature neurons. Our results suggest that longer-term evaluation of the maturation of neurons derived from human stem cells is mandatory for the safe application of cell therapy for PD.
Collapse
Affiliation(s)
- Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Nabila Pyrenina Thamrin
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
- CHU Poitiers, 86022 Poitiers, France
| | - Maureen Francheteau
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Maëlig Patrigeon
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
| | - Laure Belnoue
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
- CHU Poitiers, 86022 Poitiers, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, INSERM 1084, 86022 Poitiers, France; (S.B.); (N.P.T.); (M.-L.B.); (M.F.); (M.P.); (L.B.)
- Correspondence: ; Tel.: +33-54-945-3873
| |
Collapse
|
35
|
Bachoud-Lévi AC. What did we learn from neural grafts in Huntington disease? Rev Neurol (Paris) 2022; 178:441-449. [PMID: 35491247 DOI: 10.1016/j.neurol.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Huntington's disease is a rare, severe, and inherited neurodegenerative disorder that affects young adults. To date, there is no treatment to stop its progression. The primary atrophy of the striatum in HD, is limited in space and centrally focalised in the brain and thus constitutes a good candidate for graft. Therefore, transplantation of foetal cells from the ganglionic eminence, the germinal zone of the striatum, has the potential to restore disrupted fronto-cortical circuits and corresponding clinical functions. The international Multicentric intracerebral Grafting in Huntington's disease trial was not as successful as two pilot trials (Créteil and London) which showed promising results in the 2000s, displaying stabilisation/recovery of symptoms in some patients. A point-by-point comparison of the differences between MIG-HD and the pilot trial from Créteil in which similar data are available provides lessons on the grafting procedure and allows for strategic thinking before embarking on future trials. MIG-HD demonstrated the existence of intracerebral alloimmunisation leading to acute or chronic graft rejection into the brain and showed the limitations of surgical standardisation and immunosuppression. It has also improved the safety of the procedure and provided guidance for the follow-up of future patients. Indeed, even if disease modifiers treatments are currently the focus of intense research, they may not stop or slow the progression of the disease sufficiently, or even be administered in all patients, to prevent brain atrophy in all cases. Although disease-modifying therapies are currently the subject of intense research, they may not stop or slow disease progression sufficiently, or may not be given to all patients to prevent brain atrophy. A combination with intracerebral transplantation to repair the damaged structures may thus prove beneficial. Altogether, pursuing research in intracerebral transplantation remains necessary.
Collapse
Affiliation(s)
- A-C Bachoud-Lévi
- Département d'études cognitives, école normale supérieure, PSL University, 75005 Paris, France; Inserm U955, Institut Mondor de Recherche Biomédicale, Equipe E01 NeuroPsychologie Interventionnelle, 94000 Créteil, France; Faculté de médecine, Université Paris-Est Créteil, 94000 Créteil, France; Assistance Publique-Hôpitaux de Paris, National Reference Center for Huntington's Disease, Neurology Department, Henri Mondor-Albert Chenevier Hospital, Créteil, France.
| |
Collapse
|
36
|
Lane EL, Harrison DJ, Ramos‐Varas E, Hills R, Turner S, Lelos MJ. Spontaneous Graft-Induced Dyskinesias Are Independent of 5-HT Neurons and Levodopa Priming in a Model of Parkinson's Disease. Mov Disord 2022; 37:613-619. [PMID: 34766658 PMCID: PMC9208367 DOI: 10.1002/mds.28856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The risk of graft-induced dyskinesias (GIDs) presents a major challenge in progressing cell transplantation as a therapy for Parkinson's disease. Current theories implicate the presence of grafted serotonin neurons, hotspots of dopamine release, neuroinflammation and established levodopa-induced dyskinesia. OBJECTIVE To elucidate the mechanisms of GIDs. METHODS Neonatally desensitized, dopamine denervated rats received intrastriatal grafts of human embryonic stem cells (hESCs) differentiated into either ventral midbrain dopaminergic progenitor (vmDA) (n = 15) or ventral forebrain cells (n = 14). RESULTS Of the eight rats with surviving grafts, two vmDA rats developed chronic spontaneous GIDs, which were observed at 30 weeks post-transplantation. GIDs were inhibited by D2 -like receptor antagonists and not affected by 5-HT1A/1B/5-HT6 agonists/antagonists. Grafts in GID rats showed more microglial activation and lacked serotonin neurons. CONCLUSIONS These findings argue against current thinking that rats do not develop spontaneous GID and that serotonin neurons are causative, rather indicating that GID can be induced in rats by hESC-derived dopamine grafts and, critically, can occur independently of both previous levodopa exposure and grafted serotonin neurons. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Emma L. Lane
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUnited Kingdom
| | - David J. Harrison
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Elena Ramos‐Varas
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Rachel Hills
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Sophie Turner
- Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUnited Kingdom
| | - Mariah J. Lelos
- School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
37
|
Choi BD, Carter BS. Engineering Our Future: Advancing Cell and Gene Therapy in Neurosurgery. Neurosurgery 2022; 68:11-16. [DOI: 10.1227/neu.0000000000001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/08/2022] [Indexed: 11/19/2022] Open
|
38
|
Binh NT, Son NK, Phuong DT, Huong DT, Hoan NP, Hoa NT, Duc NM, Ha NM. Proliferation and Differentiation of Dopaminergic Neurons from Human Neuroepithelial Stem Cells Obtained from Embryo Reduction Following In Vitro Fertilization. Med Arch 2021; 75:280-285. [PMID: 34759448 PMCID: PMC8563046 DOI: 10.5455/medarh.2021.75.280-285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Recent advances in stem cell technologies have rekindled an interest in the use of cell therapies to treat patients with Parkinson’s disease. Although the transplantation of dopaminergic mesencephalic human fetal brain tissue has previously been reported in the treatment of patients with Parkinson’s disease, this method is limited by the availability of tissue obtained from each human embryo. Objective: Our study aimed to isolate, culture, proliferate, and differentiate dopaminergic neurons from human neuroepithelial stem cells obtained from embryo reduction procedures performed in multifetal pregnancies following in vitro fertilization. Materials and Methods: A total of 201 human embryos were dissected for isolation and culture of neuroepithelial stem cells for proliferation and differentiation into dopaminergic neurons. All embryos were obtained from embryo reduction procedures performed in multifetal pregnancies after in vitro fertilization treatments. Results: Human neuroepithelial stem cells were isolated and cultured from embryos from 6.0 to 8.0 weeks. Neuroepithelial stem cells were successfully isolated, proliferated, and differentiated into dopaminergic neurons. The cells adhered to the surfaces of cell culture plates after 2 days and could be proliferated and differentiated into neurons within 4 days. Cultured cells expressed the dopaminergic marker tyrosine hydroxylase after 6 days, suggesting that these cells were successfully differentiated into dopaminergic neurons. Conclusion: The successful isolation, culture, proliferation, and differentiation of human dopaminergic neurons from embryo reductions performed for multifetal pregnancies after in vitro fertilization suggests that this pathway may serve as a potential source of cell therapy materials for use in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Nguyen Thi Binh
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Khang Son
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Dao Thuy Phuong
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Do Thuy Huong
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Phuc Hoan
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Thanh Hoa
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Minh Duc
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Manh Ha
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| |
Collapse
|
39
|
Sun Y, Feng L, Liang L, Stacey GN, Wang C, Wang Y, Hu B. Neuronal cell-based medicines from pluripotent stem cells: Development, production, and preclinical assessment. Stem Cells Transl Med 2021; 10 Suppl 2:S31-S40. [PMID: 34724724 PMCID: PMC8560198 DOI: 10.1002/sctm.20-0522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Brain degeneration and damage is difficult to cure due to the limited endogenous repair capability of the central nervous system. Furthermore, drug development for treatment of diseases of the central nervous system remains a major challenge. However, it now appears that using human pluripotent stem cell-derived neural cells to replace degenerating cells provides a promising cell-based medicine for rejuvenation of brain function. Accordingly, a large number of studies have carried out preclinical assessments, which have involved different neural cell types in several neurological diseases. Recent advances in animal models identify the transplantation of neural derivatives from pluripotent stem cells as a promising path toward the clinical application of cell therapies [Stem Cells Transl Med 2019;8:681-693; Drug Discov Today 2019;24:992-999; Nat Med 2019;25:1045-1053]. Some groups are moving toward clinical testing in humans. However, the difficulty in selection of valuable critical quality criteria for cell products and the lack of functional assays that could indicate suitability for clinical effect continue to hinder neural cell-based medicine development [Biologicals 2019;59:68-71]. In this review, we summarize the current status of preclinical studies progress in this area and outline the biological characteristics of neural cells that have been used in new developing clinical studies. We also discuss the requirements for translation of stem cell-derived neural cells in examples of stem cell-based clinical therapy.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China
| | - Lin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Lingmin Liang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Glyn N Stacey
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- International Stem Cell Banking Initiative, Barley, Hertfordshire, UK
| | - Chaoqun Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People's Republic of China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
40
|
Abstract
Neurodegenerative diseases, characterized by progressive neural loss, have been some of the most challenging medical problems in aging societies. Treatment strategies such as symptom management have little impact on dis-ease progression, while intervention with specific disease mechanisms may only slow down disease progression. One therapeutic strategy that has the potential to reverse the disease phenotype is to replenish neurons and re-build the pathway lost to degeneration. Although it is generally believed that the central nervous system has lost the capability to regenerate, increasing evidence indicates that the brain is more plastic than previously thought, containing perhaps the biggest repertoire of cells with latent neurogenic programs in the body. This review focuses on key advances in generating new neurons through in situ neuronal reprogramming, which is tied to fun-damental questions regarding adult neurogenesis, cell source, and mecha-nisms for neuronal reprogramming, as well as the ability of new neurons to integrate into the existing circuitry. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA;
| |
Collapse
|
41
|
Yoo JE, Lee DR, Park S, Shin HR, Lee KG, Kim DS, Jo MY, Eom JH, Cho MS, Hwang DY, Kim DW. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ PARKINSONS DISEASE 2021; 7:61. [PMID: 34282148 PMCID: PMC8289854 DOI: 10.1038/s41531-021-00204-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Successful cell therapy for Parkinson’s disease (PD) requires large numbers of homogeneous ventral mesencephalic dopaminergic (vmDA) precursors. Enrichment of vmDA precursors via cell sorting is required to ensure high safety and efficacy of the cell therapy. Here, using LMX1A-eGFP knock-in reporter human embryonic stem cells, we discovered a novel surface antigen, trophoblast glycoprotein (TPBG), which was preferentially expressed in vmDA precursors. TPBG-targeted cell sorting enriched FOXA2+LMX1A+ vmDA precursors and helped attain efficient behavioral recovery of rodent PD models with increased numbers of TH+, NURR1+, and PITX3+ vmDA neurons in the grafts. Additionally, fewer proliferating cells were detected in TPBG+ cell-derived grafts than in TPBG− cell-derived grafts. Our approach is an efficient way to obtain enriched bona fide vmDA precursors, which could open a new avenue for effective PD treatment.
Collapse
Affiliation(s)
- Jeong-Eun Yoo
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongjin R Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sanghyun Park
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kun Gu Lee
- Department of Biomedical Science, CHA University, Sungnam, Gyeonggi-do, South Korea
| | - Dae-Sung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Sungnam, Gyeonggi-do, South Korea.
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea. .,Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea. .,Brain Korea 21 PLUS Program for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
42
|
Burns TC, Quinones-Hinojosa A. Regenerative medicine for neurological diseases-will regenerative neurosurgery deliver? BMJ 2021; 373:n955. [PMID: 34162530 DOI: 10.1136/bmj.n955] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regenerative medicine aspires to transform the future practice of medicine by providing curative, rather than palliative, treatments. Healing the central nervous system (CNS) remains among regenerative medicine's most highly prized but formidable challenges. "Regenerative neurosurgery" provides access to the CNS or its surrounding structures to preserve or restore neurological function. Pioneering efforts over the past three decades have introduced cells, neurotrophins, and genes with putative regenerative capacity into the CNS to combat neurodegenerative, ischemic, and traumatic diseases. In this review we critically evaluate the rationale, paradigms, and translational progress of regenerative neurosurgery, harnessing access to the CNS to protect, rejuvenate, or replace cell types otherwise irreversibly compromised by neurological disease. We discuss the evidence surrounding fetal, somatic, and pluripotent stem cell derived implants to replace endogenous neuronal and glial cell types and provide trophic support. Neurotrophin based strategies via infusions and gene therapy highlight the motivation to preserve neuronal circuits, the complex fidelity of which cannot be readily recreated. We specifically highlight ongoing translational efforts in Parkinson's disease, amyotrophic lateral sclerosis, stroke, and spinal cord injury, using these to illustrate the principles, challenges, and opportunities of regenerative neurosurgery. Risks of associated procedures and novel neurosurgical trials are discussed, together with the ethical challenges they pose. After decades of efforts to develop and refine necessary tools and methodologies, regenerative neurosurgery is well positioned to advance treatments for refractory neurological diseases. Strategic multidisciplinary efforts will be critical to harness complementary technologies and maximize mechanistic feedback, accelerating iterative progress toward cures for neurological diseases.
Collapse
Affiliation(s)
- Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
43
|
Madrid M, Sumen C, Aivio S, Saklayen N. Autologous Induced Pluripotent Stem Cell-Based Cell Therapies: Promise, Progress, and Challenges. Curr Protoc 2021; 1:e88. [PMID: 33725407 DOI: 10.1002/cpz1.88] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The promise of human induced pluripotent stem cells (iPSCs) lies in their ability to serve as a starting material for autologous, or patient-specific, stem cell-based therapies. Since the first publications describing the generation of iPSCs from human tissue in 2007, a Phase I/IIa clinical trial testing an autologous iPSC-derived cell therapy has been initiated in the U.S., and several other autologous iPSC-based therapies have advanced through various stages of development. Three single-patient in-human transplants of autologous iPSC-derived cells have taken place worldwide. None of the patients suffered serious adverse events, despite not undergoing immunosuppression. These promising outcomes support the proposed advantage of an autologous approach: a cell therapy product that can engraft without the risk of immune rejection, eliminating the need for immunosuppression and the associated side effects. Despite this advantage, there are currently more allogeneic than autologous iPSC-based cell therapy products in development due to the cost and complexity of scaling out manufacturing for each patient. In this review, we highlight recent progress toward clinical translation of autologous iPSC-based cell therapies. We also highlight technological advancements that would reduce the cost and complexity of autologous iPSC-based cell therapy production, enabling autologous iPSC-based therapies to become a more commonplace treatment modality for patients. © 2021 The Authors.
Collapse
Affiliation(s)
| | - Cenk Sumen
- Stemson Therapeutics, San Diego, California
| | | | | |
Collapse
|
44
|
Kim TW, Piao J, Koo SY, Kriks S, Chung SY, Betel D, Socci ND, Choi SJ, Zabierowski S, Dubose BN, Hill EJ, Mosharov EV, Irion S, Tomishima MJ, Tabar V, Studer L. Biphasic Activation of WNT Signaling Facilitates the Derivation of Midbrain Dopamine Neurons from hESCs for Translational Use. Cell Stem Cell 2021; 28:343-355.e5. [PMID: 33545081 DOI: 10.1016/j.stem.2021.01.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/04/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Human pluripotent stem cells show considerable promise for applications in regenerative medicine, including the development of cell replacement paradigms for the treatment of Parkinson's disease. Protocols have been developed to generate authentic midbrain dopamine (mDA) neurons capable of reversing dopamine-related deficits in animal models of Parkinson's disease. However, the generation of mDA neurons at clinical scale suitable for human application remains an important challenge. Here, we present an mDA neuron derivation protocol based on a two-step WNT signaling activation strategy that improves expression of midbrain markers, such as Engrailed-1 (EN1), while minimizing expression of contaminating posterior (hindbrain) and anterior (diencephalic) lineage markers. The resulting neurons exhibit molecular, biochemical, and electrophysiological properties of mDA neurons. Cryopreserved mDA neuron precursors can be successfully transplanted into 6-hydroxydopamine (6OHDA) lesioned rats to induce recovery of amphetamine-induced rotation behavior. The protocol presented here is the basis for clinical-grade mDA neuron production and preclinical safety and efficacy studies.
Collapse
Affiliation(s)
- Tae Wan Kim
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinghua Piao
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Neurosurgery and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - So Yeon Koo
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Neuroscience Graduate Program of Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Sonja Kriks
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sun Young Chung
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Se Joon Choi
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Susan Zabierowski
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brittany N Dubose
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellen J Hill
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eugene V Mosharov
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Stefan Irion
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark J Tomishima
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Neurosurgery and Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Lorenz Studer
- Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Li JY, Li W. Postmortem Studies of Fetal Grafts in Parkinson's Disease: What Lessons Have We Learned? Front Cell Dev Biol 2021; 9:666675. [PMID: 34055800 PMCID: PMC8155361 DOI: 10.3389/fcell.2021.666675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Neural transplantation is a potential therapeutic method for Parkinson’s disease (PD). Fetal dopaminergic (DA) neurons have been important transplantation cell sources in the history of replacement therapy for PD. Several decades of preclinical animal experiments and clinical trials using fetal DA neuron transplantation in PD therapy have shown not only promising results but also problems. In order to reveal possible factors influencing the clinical outcomes, we reviewed fetal DA neuron transplantation therapies from 1970s to present, with a special focus on postmortem studies. Firstly, we gave a general description of the clinical outcomes and neuroanatomy of grafted cases; secondly, we summarized the main available postmortem studies, including the cell survival, reinnervation, and pathology development. In the end, we further discussed the link between function and structure of the grafts, seeking for the possible factors contributing to a functional graft. With our review, we hope to provide references for future transplantation trials from a histological point of view.
Collapse
Affiliation(s)
- Jia-Yi Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Wen Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Barbuti PA, Barker RA, Brundin P, Przedborski S, Papa SM, Kalia LV, Mochizuki H. Recent Advances in the Development of Stem-Cell-Derived Dopaminergic Neuronal Transplant Therapies for Parkinson's Disease. Mov Disord 2021; 36:1772-1780. [PMID: 33963552 DOI: 10.1002/mds.28628] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen exciting advances in the development of potential stem cell-based therapies for Parkinson's disease (PD), which have used different types of stem cells as starting material. These cells have been developed primarily to replace dopamine-producing neurons in the substantia nigra that are progressively lost in the disease process. The aim is to largely restore lost motor functions, whilst not ever being curative. We discuss cell-based strategies that will have to fulfill important criteria to become effective and competitive therapies for PD. These criteria include reproducibly producing sufficient numbers of cells with an authentic substantia nigra dopamine neuron A9 phenotype, which can integrate into the host brain after transplantation and form synapses (considered crucial for long-term functional benefits). Furthermore, it is essential that transplanted cells exhibit no, or only very low levels of, proliferation without tumor formation at the site of grafting. Cumulative research has shown that stem cell-based approaches continue to have great potential in PD, but key questions remain to be answered. Here, we review the most recent progress in research on stem cell-based dopamine neuron replacement therapy for PD and briefly discuss what the immediate future might hold. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Peter A Barbuti
- Departments of Neurology, Pathology and Cell Biology, and Neuroscience, Columbia University, New York, New York, USA
| | - Roger A Barker
- Department of Clinical Neuroscience and WT-MRC Cambridge Stem Cell Institute, University of Cambridge and Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Patrik Brundin
- Van Andel Institute, Center for Parkinson's Disease, Department of Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology and Cell Biology, and Neuroscience, Columbia University, New York, New York, USA
| | - Stella M Papa
- Yerkes National Primate Research Center and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lorraine V Kalia
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
47
|
Single-Cell Technologies in Parkinson׳s Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Novel PET Biomarkers to Disentangle Molecular Pathways across Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9122581. [PMID: 33276490 PMCID: PMC7761606 DOI: 10.3390/cells9122581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
There is a need to disentangle the etiological puzzle of age-related neurodegenerative diseases, whose clinical phenotypes arise from known, and as yet unknown, pathways that can act distinctly or in concert. Enhanced sub-phenotyping and the identification of in vivo biomarker-driven signature profiles could improve the stratification of patients into clinical trials and, potentially, help to drive the treatment landscape towards the precision medicine paradigm. The rapidly growing field of neuroimaging offers valuable tools to investigate disease pathophysiology and molecular pathways in humans, with the potential to capture the whole disease course starting from preclinical stages. Positron emission tomography (PET) combines the advantages of a versatile imaging technique with the ability to quantify, to nanomolar sensitivity, molecular targets in vivo. This review will discuss current research and available imaging biomarkers evaluating dysregulation of the main molecular pathways across age-related neurodegenerative diseases. The molecular pathways focused on in this review involve mitochondrial dysfunction and energy dysregulation; neuroinflammation; protein misfolding; aggregation and the concepts of pathobiology, synaptic dysfunction, neurotransmitter dysregulation and dysfunction of the glymphatic system. The use of PET imaging to dissect these molecular pathways and the potential to aid sub-phenotyping will be discussed, with a focus on novel PET biomarkers.
Collapse
|
49
|
The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2020; 148:105175. [PMID: 33188920 PMCID: PMC7855552 DOI: 10.1016/j.nbd.2020.105175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Prevalent in approximately 20% of the worldwide human population, the
rs6265 (also called ‘Val66Met’) single nucleotide polymorphism
(SNP) in the gene for brain-derived neurotrophic factor (BDNF)
is a common genetic variant that can alter therapeutic responses in individuals
with Parkinson’s disease (PD). Possession of the variant Met allele
results in decreased activity-dependent release of BDNF. Given the resurgent
worldwide interest in neural transplantation for PD and the biological relevance
of BDNF, the current studies examined the effects of the rs6265 SNP on
therapeutic efficacy and side-effect development following primary dopamine (DA)
neuron transplantation. Considering the significant reduction in BDNF release
associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF
signaling contributes to the limited clinical benefit observed in a
subpopulation of PD patients despite robust survival of grafted DA neurons, and
further, that this mutation contributes to the development of aberrant
graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat
model of the rs6265 BDNF SNP to examine for the first time the
influence of a common genetic polymorphism on graft survival, functional
efficacy, and side-effect liability, comparing these parameters between
wild-type (Val/Val) rats and those homozygous for the variant Met allele
(Met/Met). Counter to our hypothesis, the current research indicates that
Met/Met rats show enhanced graft-associated therapeutic efficacy and a
paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type
rats. However, consistent with our hypothesis, we demonstrate that the rs6265
genotype in the host rat is strongly linked to development of GID, and that this
behavioral phenotype is significantly correlated with neurochemical signatures
of atypical glutamatergic neurotransmission by grafted DA neurons.
Collapse
|
50
|
Vijayanathan Y, Lim SM, Tan MP, Lim FT, Majeed ABA, Ramasamy K. Adult Endogenous Dopaminergic Neuroregeneration Against Parkinson's Disease: Ideal Animal Models? Neurotox Res 2020; 39:504-532. [PMID: 33141428 DOI: 10.1007/s12640-020-00298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. The etiology of PD remains an enigma with no available disease modifying treatment or cure. Pharmacological compensation is the only quality of life improving treatments available. Endogenous dopaminergic neuroregeneration has recently been considered a plausible therapeutic strategy for PD. However, researchers have to first decipher the complexity of adult endogenous neuroregeneration. This raises the need of animal models to understand the underlying molecular basis. Mammalian models with highly conserved genetic homology might aid researchers to identify specific molecular mechanisms. However, the scarcity of adult neuroregeneration potential in mammals obfuscates such investigations. Nowadays, non-mammalian models are gaining popularity due to their explicit ability to neuroregenerate naturally without the need of external enhancements, yet these non-mammals have a much diverse gene homology that critical molecular signals might not be conserved across species. The present review highlights the advantages and disadvantages of both mammalian and non-mammalian animal models that can be essentially used to study the potential of endogenous DpN regeneration against PD.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fei Ting Lim
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|