1
|
Skouras P, Markouli M, Kalamatianos T, Stranjalis G, Korkolopoulou P, Piperi C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023; 11:2371. [PMID: 37760812 PMCID: PMC10525418 DOI: 10.3390/biomedicines11092371] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gliomas comprise the most frequent primary central nervous system (CNS) tumors, characterized by remarkable genetic and epigenetic heterogeneity, difficulty in monitoring, and increased relapse and mortality rates. Tissue biopsy is an established method of tumor cell collection and analysis that enables diagnosis, classification of different tumor types, and prediction of prognosis upon confirmation of tumor's location for surgical removal. However, it is an invasive and often challenging procedure that cannot be used for frequent patient screening, detection of mutations, disease monitoring, or resistance to therapy. To this end, the minimally invasive procedure of liquid biopsy has emerged, allowing effortless tumor sampling and enabling continuous monitoring. It is considered a novel preferable way to obtain faster data on potential tumor risk, personalized diagnosis, prognosis, and recurrence evaluation. The purpose of this review is to describe the advances on liquid biopsy for glioma diagnosis and management, indicating several biomarkers that can be utilized to analyze tumor characteristics, such as cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating proteins, circulating tumor cells (CTCs), and exosomes. It further addresses the benefit of combining liquid biopsy with radiogenomics to facilitate early and accurate diagnoses, enable precise prognostic assessments, and facilitate real-time disease monitoring, aiming towards more optimal treatment decisions.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Theodosis Kalamatianos
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - George Stranjalis
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Eibl RH, Schneemann M. Liquid biopsy and glioblastoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:28-41. [PMID: 36937320 PMCID: PMC10017188 DOI: 10.37349/etat.2023.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 02/27/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. Despite a century of research efforts, the survival of patients has not significantly improved. Currently, diagnosis is based on neuroimaging techniques followed by histopathological and molecular analysis of resected or biopsied tissue. A recent paradigm shift in diagnostics ranks the molecular analysis of tissue samples as the new gold standard over classical histopathology, thus correlating better with the biological behavior of glioblastoma and clinical prediction, especially when a tumor lacks the typical hallmarks for glioblastoma. Liquid biopsy aims to detect and quantify tumor-derived content, such as nucleic acids (DNA/RNA), circulating tumor cells (CTCs), or extracellular vesicles (EVs) in biofluids, mainly blood, cerebrospinal fluid (CSF), or urine. Liquid biopsy has the potential to overcome the limitations of both neuroimaging and tissue-based methods to identify early recurrence and to differentiate tumor progression from pseudoprogression, without the risks of repeated surgical biopsies. This review highlights the origins and time-frame of liquid biopsy in glioblastoma and points to recent developments, limitations, and challenges of adding liquid biopsy to support the clinical management of glioblastoma patients.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
- Correspondence: Robert H. Eibl, c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland.
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
3
|
Eibl RH, Schneemann M. Liquid biopsy for monitoring medulloblastoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:280-291. [PMID: 39697492 PMCID: PMC11648495 DOI: 10.20517/evcna.2022.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 12/20/2024]
Abstract
Despite recent progress in molecular diagnostics defining four distinct medulloblastoma groups, the clinical management of these malignant childhood tumors of the cerebellum remains challenging. After surgical removal of the tumor, both cytotoxic chemotherapy and irradiation can offer additional curative benefits, but they also include a significant risk of long-term damage. Early molecular profiling aims to predict the outcome of such aggressive therapies. This prevents unnecessary damage to patients who may not need it and helps to identify those patients with remaining tumor cells who may benefit from more aggressive treatment with the intent to cure. Monitoring tumor evolution in real time allows personalized precision medicine with an immediate clinical response resulting in a better outcome. Liquid biopsy includes various methodologies already applied in numerous studies and clinical trials for common cancers including brain tumors, but information on medulloblastomas is limited. This review summarizes the recent developments of how liquid biopsy can support or even replace the standard monitoring of medulloblastomas by medical imaging or cytology and discusses what will be needed to make liquid biopsy a new gold standard in diagnosis, therapy, and follow-up of medulloblastomas for the benefit of the patients.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
4
|
Eibl RH, Schneemann M. Liquid Biopsy and Primary Brain Tumors. Cancers (Basel) 2021; 13:5429. [PMID: 34771592 PMCID: PMC8582521 DOI: 10.3390/cancers13215429] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Two decades of "promising results" in liquid biopsy have led to both continuing disappointment and hope that the new era of minimally invasive, personalized analysis can be applied for better diagnosis, prognosis, monitoring, and therapy of cancer. Here, we briefly highlight the promises, developments, and challenges related to liquid biopsy of brain tumors, including circulating tumor cells, cell-free nucleic acids, extracellular vesicles, and miRNA; we further discuss the urgent need to establish suitable biomarkers and the right standards to improve modern clinical management of brain tumor patients with the use of liquid biopsy.
Collapse
Affiliation(s)
- Robert H. Eibl
- c/o M. Schneemann, Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| | - Markus Schneemann
- Department of Internal Medicine, Hospitals of Schaffhausen, 8208 Schaffhausen, Switzerland
| |
Collapse
|
5
|
'Prodrug-Like' Acetylmannosamine Modified Liposomes Loaded With Arsenic Trioxide for the Treatment of Orthotopic Glioma in Mice. J Pharm Sci 2020; 109:2861-2873. [PMID: 32534027 DOI: 10.1016/j.xphs.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Glioma is one of the fatal intracranial cancers that is a huge challenge to decrease the death rate currently. The deep penetration and high accumulation of therapeutic inorganic ions into the tumor site are extremely impeded due to the existence of physiological barriers, which limits to widen the indication of some drugs such as arsenic trioxide. The previous data have confirmed that the mannose substrate (MAN) without acetyl groups facilitates vesicles to go into the brain. Given that deacetylation of Ac4MAN groups on the surface of liposomes under the enzyme incubation occurred, namely 'prodrug-like' features of vesicles, the liposomes could more easily penetrate the BBB, target the glioma site, release arsenic trioxide, and inhibit the growth of glioma cells in the brain. Besides, the possibility of Ac4MAN binding to Gluts could be reduced due to the steric hindrance of acetyl groups, decreasing the off-target effects of vesicles. Here, we developed 'prodrug-like' arsenic trioxide (As2O3, ATO)-loaded liposomes inserted with distearoyl phospho-ethanolamine-polyethylene glycol-1000-p-carboxylpheny-α-d-acetylmannosamine (DSPE-PEG-1000-Ac4MAN), which was named Ac4MAN-ATO-LIP. Cytotoxic experiments of liposomes indicated that the toxicity of Ac4MAN-ATO-LIP was lower than that of free ATO but stronger than that of ATO-LIP (without insertion of DSPE-PEG-1000-Ac4MAN). The uptake of vesicles by U87 glioma cells displayed that the cellular uptake of Ac4MAN-Rho-LIP (labeled by rhodamine) was remarkably improved, compared with Rho-LIP. The in vivo biodistribution results showed the superiority of Ac4MAN-Rho-LIP in enhanced intracranial accumulation. Furthermore, the treatment of orthotopic glioma in Balb/c nude mice with Ac4MAN-ATO-LIP elongated the survival time of the animals than that with physiological saline, free ATO, or ATO-LIP, respectively. All the results suggested that the Ac4MAN-ATO-LIP had stronger anti-glioma effects as well as lower toxicities, and may be a promising approach for the treatment of brain cancer.
Collapse
|
6
|
Chen T, Song X, Gong T, Fu Y, Yang L, Zhang Z, Gong T. nRGD modified lycobetaine and octreotide combination delivery system to overcome multiple barriers and enhance anti-glioma efficacy. Colloids Surf B Biointerfaces 2017; 156:330-339. [PMID: 28544965 DOI: 10.1016/j.colsurfb.2017.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 12/17/2022]
Abstract
For glioma as one of the most common and lethal primary brain tumors, the presence of BBB, BBTB, vasculogenic mimicry (VM) channels and tumor-associated macrophages (TAMs) are key biological barriers. Here, a novel drug delivery system which could efficiently deliver drugs to glioma by overcoming multi-barriers and increase antitumor efficacy through multi-therapeutic mechanisms was well developed. In this study, a multi-target peptide nRGD was used to transport across the BBB, mediate tumor penetration and target TAMs. Lycobetaine (LBT) was adopted to kill glioma cells and octreotide (OCT) was co-delivered to inhibit VM channels and prevent angiogenesis. LBT-OCT liposomes (LPs) showed controlled release profile in vitro, increased uptake efficiency, improved inhibitory effect against glioma cells and VM formation, and enhanced BBB-crossing capability. The median survival time of glioma-bearing mice administered with LBT-OCT LPs-nRGD was significantly longer than LBT-OCT LPs (P<0.01). Besides, nRGD achieved a stronger inhibitory effect against tumor associated macrophages (TAMs) compared to LPs-iRGD treatment groups in vivo. Thus, LPs-nRGD represented a promising versatile delivery platform for combination drug therapy in glioma treatment.
Collapse
Affiliation(s)
- Tijia Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ting Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liuqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
7
|
Xie Z, Shen Q, Xie C, Lu W, Peng C, Wei X, Li X, Su B, Gao C, Liu M. Retro-inverso bradykinin opens the door of blood–brain tumor barrier for nanocarriers in glioma treatment. Cancer Lett 2015; 369:144-51. [DOI: 10.1016/j.canlet.2015.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/08/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
|
8
|
Veliz I, Loo Y, Castillo O, Karachaliou N, Nigro O, Rosell R. Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future? ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:7. [PMID: 25705639 PMCID: PMC4293478 DOI: 10.3978/j.issn.2305-5839.2014.10.06] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 11/14/2022]
Abstract
Malignant gliomas, such as glioblastoma multiforme (GBM), present some of the greatest challenges in the management of cancer patients worldwide. Even with aggressive surgical resections and recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal and quality of life is poor. Although new molecular pathways crucial to the biology and invasive ability of GBM are coming to light, translation of basic science achievements into clinical practice is slow. Optimal management requires a multidisciplinary approach and knowledge of potential complications arising from both disease and treatment. To help illustrate "where we are going" with GBM, we here include a detailed depiction of the molecular alterations underlying this fatal disease, as well as intensive research over the past two decades that has led to considerable advances in the understanding of basic GBM biology, pathogenesis and therapeutic approaches.
Collapse
|