1
|
Mao Y, Shangguan D, Huang Q, Xiao L, Cao D, Zhou H, Wang YK. Emerging artificial intelligence-driven precision therapies in tumor drug resistance: recent advances, opportunities, and challenges. Mol Cancer 2025; 24:123. [PMID: 40269930 DOI: 10.1186/s12943-025-02321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Drug resistance is one of the main reasons for cancer treatment failure, leading to a rapid recurrence/disease progression of the cancer. Recently, artificial intelligence (AI) has empowered physicians to use its powerful data processing and pattern recognition capabilities to extract and mine valuable drug resistance information from large amounts of clinical or omics data, to study drug resistance mechanisms, to evaluate and predict drug resistance, and to develop innovative therapeutic strategies to reduce drug resistance. In this review, we proposed a feasible workflow for incorporating AI into tumor drug resistance research, highlighted current AI-driven tumor drug resistance applications, and discussed the opportunities and challenges encountered in the process. Based on a comprehensive literature analysis, we systematically summarized the role of AI in tumor drug resistance research, including drug development, resistance mechanism elucidation, drug sensitivity prediction, combination therapy optimization, resistance phenotype identification, and clinical biomarker discovery. With the continuous advancement of AI technology and rigorous validation of clinical data, AI models are expected to fuel the development of precision oncology by improving efficacy, guiding therapeutic decisions, and optimizing patient prognosis. In summary, by leveraging clinical and omics data, AI models are expected to pioneer new therapy strategies to mitigate tumor drug resistance, improve efficacy and patient survival, and provide novel perspectives and tools for oncology treatment.
Collapse
Affiliation(s)
- Yuan Mao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Dangang Shangguan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Xiao
- Department of Histology and Embryology of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Dongsheng Cao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Zhou
- Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, Changsha, Hunan, People's Republic of China.
| | - Yi-Kun Wang
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2025; 25:153-166. [PMID: 39681638 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Hua Y, Guo Z, Wang Y, Li C, Yan B. Application of patient derived xenograft model in personalized drug screening for chondrosarcoma of head and neck: A preclinical study. Oral Oncol 2025; 162:107222. [PMID: 39999643 DOI: 10.1016/j.oraloncology.2025.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
OBJECTIVES The effect of radiotherapy and chemotherapy on head and neck chondrosarcoma (HNCS) has not been unanimously determined because of the rarity of HNCS. Patient-Derived Xenograft (PDX) model is considered to be a good preclinical model for new drug development and personalized drug screening. We performed this study to investigate the preclinical application and value of PDX model in drug screening for HNCS. MATERIALS AND METHODS Tumor tissues of a patient with HNCS who underwent surgical treatment in the Department of Head and Neck Oncology of our hospital were collected. The PDX model was established in NCG mice and successfully passed to the P3 generation in nude mice. After the tumor grew to a certain size, three drugs targeting different molecules (Nilotinib, Regorafenib, Rapamycin) were given respectively. The treatment efficiency and safety were observed. RESULTS NCG mouse is a kind of mouse that can successfully establish the PDX model of HNCS, and the PDX model can be stably passed in nude mice. The PDX tumor show similar histopathological characteristics to the parent tumors. After stable passaging, the mesenchymal cells were reduced and the tumor cells were increased in PDX tumor, making it easier to extract primary tumor cells. In the P3 PDX tumor, oral administration of nilotinib and regorafenib or intraperitoneal injection of rapamycin could significantly reduce the tumor size. CONCLUSION For rare tumors such as HNCS, PDX model is a good preclinical model for personalized drug screening and has good clinical application value.
Collapse
Affiliation(s)
- Yufei Hua
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyong Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bing Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Wu C, Liu X, Liu R, Song S, Zheng Z, Zeng Y, Mei Y, Zhang J, Duan Q, Lin R, Du J, He W. Sustained Endocytosis Inhibition via Locally-Injected Drug-Eluting Hydrogel Improves ADCC-Mediated Antibody Therapy in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407239. [PMID: 39560161 PMCID: PMC11727399 DOI: 10.1002/advs.202407239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/29/2024] [Indexed: 11/20/2024]
Abstract
The epidermal growth factor receptor (EGFR) is a validated therapeutic target for RAS/RAF wild-type colorectal cancer (CRC). However, monoclonal antibody-based anti-EGFR therapies such as cetuximab have limited effectiveness. Herein, it is identified that EGFR internalization is associated with poor treatment response and prognosis in patients with CRC, based on a retrospective analysis of patients treated with cetuximab. It is further demonstrated that the endocytosis inhibitor prochlorperazine (PCZ) can move EGFR, which is hidden inside the cell, to the cell surface to improve therapeutic antibody binding. Thus, a thermosensitive hydrogel co-loaded with cetuximab and PCZ (Gel@Cmab/PCZ) is constructed for sustained inhibition of endocytosis and effective cetuximab delivery. Peritumoral injection of Gel@Cmab/PCZ shows strong antitumor efficacy in subcutaneous and orthotopic CRC tumor models and completely abrogated liver metastasis when combined with chemotherapy. In a humanized patient-derived xenograft model, a single injection of Gel@Cmab/PCZ with one-third of the conventional cetuximab dose achieved 91% tumor growth inhibition, which promoted NK cell infiltration into tumor tissues and their antibody-dependent cell-mediated cytotoxicity effect. This study represents a novel strategy to boost the monoclonal antibody-mediated anti-tumor response in CRC.
Collapse
Affiliation(s)
- Chong Wu
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiaoting Liu
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of ImmunologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Rong Liu
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
- Guangdong Institute for Drug ControlNMPA Key Laboratory of Quality Control and Evaluation of Pharmaceutical ExcipientGuangzhou510663China
| | - Shiyao Song
- Department of Pediatrics, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Zi‐Fan Zheng
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Yilin Zeng
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Yong Mei
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jing‐Yang Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International CampusSouth China University of TechnologyGuangzhouGuangdong511442China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Qijia Duan
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Run Lin
- Department of Radiology, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jin‐Zhi Du
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenFujian361000China
| |
Collapse
|
5
|
Gunji D, Abe Y, Muraoka S, Narumi R, Isoyama J, Ikemoto N, Ishida M, Shinkura A, Tomonaga T, Nagayama S, Takahashi Y, Fukunaga Y, Sakai Y, Obama K, Adachi J. Longitudinal phosphoproteomics reveals the PI3K-PAK1 axis as a potential target for recurrent colorectal liver metastases. Cell Rep 2024; 43:115061. [PMID: 39689713 DOI: 10.1016/j.celrep.2024.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/07/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
The resistance of colorectal cancer liver metastases (CRLMs) to 5-fluorouracil (5-FU) chemotherapy remains a significant global health challenge. We investigated the phosphoproteomic dynamics of serial tissue sections obtained from initial metastases and recurrent tumors collected from 24 patients to address this unmet need for innovative therapeutic strategies for patients with CRLM with a poor prognosis. Our analysis revealed the activation of PAK kinase in patients with CRLM with a poor prognosis. Using an unbiased computational approach, we conducted a correlation analysis between PAK1 kinase activity and 545 drug sensitivity profiles across 35 colorectal cancer cell lines and identified PI3K inhibitors as potential therapeutic candidates. The efficacy of the FDA-approved PI3K inhibitor copanlisib was validated in 5-FU-resistant cell lines with high PAK1 kinase activity both in vitro and in vivo. This study presents an effective strategy for drug target discovery based on kinase activity, and the concept of this approach is widely applicable.
Collapse
Affiliation(s)
- Daigo Gunji
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Immunoproteomics Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Narumi Ikemoto
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Mimiko Ishida
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Akina Shinkura
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Department of Surgery, Uji-Tokusyukai Medical Center, Kyoto 611-0041, Japan
| | - Yu Takahashi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yosuke Fukunaga
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
7
|
Wu J, Wang Y, Yan L, Dong Y. Expression of CLDN1 and EGFR in PTC. Discov Oncol 2024; 15:562. [PMID: 39404969 PMCID: PMC11480332 DOI: 10.1007/s12672-024-01428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) involves complex genetic mechanisms, notably involving CLDN1 and EGFR. This study investigates the expression and variations of these genes and their effects on tumor behavior and patient outcomes. Meta-analysis of CLDN1 and EGFR expression in TCGA-PTC patients and GEO datasets was conducted. cBioPortal was used for clinical analysis. GSEA, GO, KEGG, Hallmark pathways, and cibersort analysis were applied. Cell proliferation, migration, invasion, and apoptosis were assessed in vitro. Co-culturing with CD8+ T cells, MTT assay, ELISA, subcutaneous tumor models, and immunohistochemistry were performed. TGF-β pathway-related proteins were analyzed via Western blot. CLDN1 and EGFR were overexpressed in PTC tumors, correlating with higher-risk patients and reduced CD8+ T cell infiltration. Silencing these genes inhibited tumor cell functions and enhanced CD8+ T cell activity, both in vitro and in vivo. CLDN1 and EGFR are crucial in PTC, linked to tumor invasiveness, EMT, and immune suppression, presenting them as potential therapeutic targets.
Collapse
Affiliation(s)
- JunJie Wu
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - YouMei Wang
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - Lei Yan
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China
| | - YaWen Dong
- Department of Pathology, the First People's Hospital of Pinghu, Jiaxing, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Gu R, Fang H, Wang R, Dai W, Cai G. A comprehensive overview of the molecular features and therapeutic targets in BRAF V600E-mutant colorectal cancer. Clin Transl Med 2024; 14:e1764. [PMID: 39073010 PMCID: PMC11283586 DOI: 10.1002/ctm2.1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
As one of the most prevalent digestive system tumours, colorectal cancer (CRC) poses a significant threat to global human health. With the emergence of immunotherapy and target therapy, the prognosis for the majority of CRC patients has notably improved. However, the subset of patients with BRAF exon 15 p.V600E mutation (BRAFV600E) has not experienced remarkable benefits from these therapeutic advancements. Hence, researchers have undertaken foundational investigations into the molecular pathology of this specific subtype and clinical effectiveness of diverse therapeutic drug combinations. This review comprehensively summarised the distinctive molecular features and recent clinical research advancements in BRAF-mutant CRC. To explore potential therapeutic targets, this article conducted a systematic review of ongoing clinical trials involving patients with BRAFV600E-mutant CRC.
Collapse
Affiliation(s)
- Ruiqi Gu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Hongsheng Fang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Renjie Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weixing Dai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Guoxiang Cai
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
9
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
11
|
Kiran N, Yashaswini C, Maheshwari R, Bhattacharya S, Prajapati BG. Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacol Transl Sci 2024; 7:967-990. [PMID: 38633600 PMCID: PMC11019743 DOI: 10.1021/acsptsci.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.
Collapse
Affiliation(s)
- Neelakanta
Sarvashiva Kiran
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department
of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka 560064, India
| | - Rahul Maheshwari
- School
of Pharmacy and Technology Management, SVKM’s
Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC,, Jadcherla, Hyderabad 509301, India
| | - Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
| |
Collapse
|
12
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
13
|
García-Roman S, Garzón-Ibáñez M, Bertrán-Alamillo J, Jordana-Ariza N, Giménez-Capitán A, García-Peláez B, Vives-Usano M, Codony-Servat J, d'Hondt E, Rosell R, Molina-Vila MÁ. Vaccine antibodies against a synthetic epidermal growth factor variant enhance the antitumor effects of inhibitors targeting the MAPK/ERK and PI3K/Akt pathways. Transl Oncol 2024; 40:101878. [PMID: 38183801 PMCID: PMC10818253 DOI: 10.1016/j.tranon.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The EGFR pathway is involved in intrinsic and acquired resistance to a wide variety of targeted therapies in cancer. Vaccination represents an alternative to the administration of anti-EGFR monoclonal antibodies, such as cetuximab or panitumumab. Here, we tested if anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) could potentiate the activity of drugs targeting the ERK/MAPK and PI3K/Akt pathways. METHODS Non-small cell lung cancer (NSCLC), colorectal cancer (CRC) and melanoma cell lines harboring KRAS, NRAS, BRAF and PIK3CA mutations were used. Anti-EGF VacAbs were obtained by immunizing rabbits with a fusion protein containing a synthetic, highly mutated variant of human EGF. Cell viability was determined by MTT, total and phosphorylated proteins by Western blotting, cell cycle distribution and cell death by flow cytometry and emergence of resistance by microscopic examination in low density cultures. RESULTS Anti-EGF VacAbs potentiated the antiproliferative effects of MEK, KRAS G12C, BRAF, PI3K and Akt inhibitors in KRAS, NRAS, BRAF and PIK3CA mutant cells and delayed the appearance of resistant clones in vitro. The effects of anti-EGF VacAbs were comparable or superior to those of panitumumab and cetuximab. The combination of anti-EGF VacAbs with the targeted inhibitors effectively suppressed EGFR downstream pathways and sera from patients immunized with an anti-EGF vaccine also blocked activation of EGFR effectors. CONCLUSIONS Anti-EGF VacAbs enhance the antiproliferative effects of drugs targeting the ERK/MAPK and PIK3CA/Akt pathways. Our data provide a rationale for clinical trials testing anti-EGF vaccination combined with inhibitors selected according to the patient's genetic profile.
Collapse
Affiliation(s)
- Silvia García-Roman
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Mónica Garzón-Ibáñez
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Jordi Bertrán-Alamillo
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Núria Jordana-Ariza
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Beatriz García-Peláez
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Marta Vives-Usano
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain
| | | | - Rafael Rosell
- Instituto Oncológico Dr. Rosell (IOR), Dexeus University Hospital, Barcelona, Spain; Catalan Institute of Oncology and Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Miguel Ángel Molina-Vila
- Laboratory of Oncology/Pangaea Oncology S.L., Dexeus University Hospital, C/ Sabino Arana 5, Barcelona 08023, Spain.
| |
Collapse
|