1
|
Shu ST, Chen L, Gonzalez-Areizaga G, Smithgall TE. Constitutive activation of the Src-family kinases Fgr and Hck enhances the tumor burden of acute myeloid leukemia cells in immunocompromised mice. Sci Rep 2025; 15:174. [PMID: 39747387 PMCID: PMC11697302 DOI: 10.1038/s41598-024-83740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr. To induce constitutive kinase activity, Hck and Fgr were fused to the coiled-coil (CC) oligomerization domain of the breakpoint cluster region protein associated with the Bcr-Abl tyrosine kinase in chronic myeloid leukemia. Expression of CC-Hck or CC-Fgr transformed TF-1 cells to a granulocyte-macrophage colony-stimulating factor (GM-CSF)-independent phenotype that correlated with enhanced phosphorylation of the kinase domain activation loop. Both CC-Hck and CC-Fgr cell populations became sensitized to growth arrest by Src-family kinase inhibitors previously shown to suppress the growth of bone marrow cells from AML patients in vitro and decrease AML cell engraftment in immunocompromised mice. Methionine substitution of the 'gatekeeper' residue (Thr338) also stimulated Hck and Fgr kinase activity and transformed TF-1 cells to GM-CSF independence without CC fusion. TF-1 cells expressing either active form of Hck or Fgr engrafted immunocompromised mice faster and developed more extensive tumors compared to mice engrafted with the parent cell line, resulting in shorter survival. Expression of wild-type Hck also significantly enhanced bone marrow engraftment without an activating mutation. Reverse phase protein array analysis linked active Hck and Fgr to the mammalian target of rapamycin complex-1/p70 S6 ribosomal protein (mTORC-1/S6) kinase and focal adhesion kinase (Fak) signaling pathways. Combining Hck and Fgr inhibitors with existing mTORC-1/S6 kinase or Fak inhibitors may improve clinical responses and reduce the potential for acquired resistance.
Collapse
Affiliation(s)
- Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Li Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Giancarlo Gonzalez-Areizaga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Suite 523, Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
2
|
Han G, Cui M, Lu P, Zhang T, Yin R, Hu J, Chai J, Wang J, Gao K, Liu W, Yao S, Cao Z, Zheng Y, Tian W, Guo R, Shen M, Liu Z, Li W, Zhao S, Lin X, Zhang Y, Song K, Sun Y, Zhou F, Zhang H. Selective translation of nuclear mitochondrial respiratory proteins reprograms succinate metabolism in AML development and chemoresistance. Cell Stem Cell 2024; 31:1777-1793.e9. [PMID: 39357516 DOI: 10.1016/j.stem.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Mitochondrial adaptations dynamically reprogram cellular bioenergetics and metabolism and confer key properties for human cancers. However, the selective regulation of these mitochondrial responses remains largely elusive. Here, inspired by a genetic screening in acute myeloid leukemia (AML), we identify RAS effector RREB1 as a translational regulator and uncover a unique translation control system for nuclear-encoded mitochondrial proteins in human cancers. RREB1 deletion reduces mitochondrial activities and succinate metabolism, thereby damaging leukemia stem cell (LSC) function and AML development. Replenishing complex II subunit SDHD rectifies these deficiencies. Notably, inhibition of complex II re-sensitizes AML cells to venetoclax treatment. Mechanistically, a short RREB1 variant binds to a conserved motif in the 3' UTRs and cooperates with elongation factor eEF1A1 to enhance protein translation of nuclear-encoded mitochondrial mRNAs. Overall, our findings reveal a unique translation control mechanism for mitochondrial adaptations in AML pathogenesis and provide a potential strategy for targeting this vulnerability of LSCs.
Collapse
Affiliation(s)
- Guoqiang Han
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Manman Cui
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pengbo Lu
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Tiantian Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jihua Chai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kexin Gao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Weidong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuxin Yao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ziyan Cao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yanbing Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Wen Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Min Shen
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Zhao
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangpeng Lin
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhui Zhang
- MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yan Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Haojian Zhang
- Department of Hematology, Zhongnan Hospital, Medical Research Institute, Wuhan University, Wuhan, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; RNA Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Wegmann R, Bonilla X, Casanova R, Chevrier S, Coelho R, Esposito C, Ficek-Pascual J, Goetze S, Gut G, Jacob F, Jacobs A, Kuipers J, Lischetti U, Mena J, Milani ES, Prummer M, Del Castillo JS, Singer F, Sivapatham S, Toussaint NC, Vilinovszki O, Wildschut MHE, Thavayogarajah T, Malani D, Aebersold R, Bacac M, Beerenwinkel N, Beisel C, Bodenmiller B, Heinzelmann-Schwarz V, Koelzer VH, Levesque MP, Moch H, Pelkmans L, Rätsch G, Tolnay M, Wicki A, Wollscheid B, Manz MG, Snijder B, Theocharides APA. Single-cell landscape of innate and acquired drug resistance in acute myeloid leukemia. Nat Commun 2024; 15:9402. [PMID: 39477946 PMCID: PMC11525670 DOI: 10.1038/s41467-024-53535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharmacoscopy) with single-cell and bulk DNA, RNA, and protein analyses, alongside clinical data from 21 rrAML patients. Unsupervised data integration reveals reduced ex vivo response to the Bcl-2 inhibitor venetoclax (VEN) in patients treated with both a hypomethylating agent (HMA) and VEN, compared to those pre-exposed to chemotherapy or HMA alone. Integrative analysis identifies both known and unreported mechanisms of innate and treatment-related VEN resistance and suggests alternative treatments, like targeting increased proliferation with the PLK inhibitor volasertib. Additionally, high CD36 expression in VEN-resistant blasts associates with sensitivity to CD36-targeted antibody treatment ex vivo. This study demonstrates how single-cell multi-omic profiling can uncover drug resistance mechanisms and treatment vulnerabilities, providing a valuable resource for future AML research.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Single-Cell Analysis
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Female
- Male
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Middle Aged
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Aged
Collapse
Affiliation(s)
- Rebekka Wegmann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Ruben Casanova
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stéphane Chevrier
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Ricardo Coelho
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cinzia Esposito
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Sandra Goetze
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gabriele Gut
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ulrike Lischetti
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuela S Milani
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Prummer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | | | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
| | - Sujana Sivapatham
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Nora C Toussaint
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland
- Swiss Data Science Center, ETH Zürich, Zurich, Switzerland
| | - Oliver Vilinovszki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Disha Malani
- Harvard Medical School and Dana-Farber Cancer Institute, Boston, USA
| | - Rudolf Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Lucas Pelkmans
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- AI Center at ETH Zurich, Zurich, Switzerland
| | - Markus Tolnay
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Faculty of Medicine, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | |
Collapse
|
4
|
Portelinha A, Wang S, Parsa S, Jiang M, Gorelick AN, Mohanty S, Sharma S, de Stanchina E, Berishaj M, Zhao C, Heward J, Aryal NK, Tavana O, Wen J, Fitzgibbon J, Dogan A, Younes A, Melnick AM, Wendel HG. SETD1B mutations confer apoptosis resistance and BCL2 independence in B cell lymphoma. J Exp Med 2024; 221:e20231143. [PMID: 39235528 PMCID: PMC11380151 DOI: 10.1084/jem.20231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The translocation t(14;18) activates BCL2 and is considered the initiating genetic lesion in most follicular lymphomas (FL). Surprisingly, FL patients fail to respond to the BCL2 inhibitor, Venetoclax. We show that mutations and deletions affecting the histone lysine methyltransferase SETD1B (KMT2G) occur in 7% of FLs and 16% of diffuse large B cell lymphomas (DLBCL). Deficiency in SETD1B confers striking resistance to Venetoclax and an experimental MCL-1 inhibitor. SETD1B also acts as a tumor suppressor and cooperates with the loss of KMT2D in lymphoma development in vivo. Consistently, loss of SETD1B in human lymphomas typically coincides with loss of KMT2D. Mechanistically, SETD1B is required for the expression of several proapoptotic BCL2 family proteins. Conversely, inhibitors of the KDM5 histone H3K4 demethylases restore BIM and BIK expression and synergize with Venetoclax in SETD1B-deficient lymphomas. These results establish SETD1B as an epigenetic regulator of cell death and reveal a pharmacological strategy to augment Venetoclax sensitivity in lymphoma.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Sara Parsa
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sagarajit Mohanty
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Soumya Sharma
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | | | - Neeraj K Aryal
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Omid Tavana
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University and Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australia
| | | | - Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Haematology R&D, AstraZeneca , New York, NY, USA
| | - Ari M Melnick
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
5
|
Zhang L, Zhou X, Aryal S, Veasey V, Zhang P, Li FJ, Luan Y, Bhatia R, Zhou Y, Lu R. CRISPR screen of venetoclax response-associated genes identifies transcription factor ZNF740 as a key functional regulator. Cell Death Dis 2024; 15:627. [PMID: 39191721 DOI: 10.1038/s41419-024-06995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug. Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel transcription factor regulating venetoclax sensitivity.
Collapse
MESH Headings
- Sulfonamides/pharmacology
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Line, Tumor
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Mice
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yu Luan
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
6
|
Del Prete R, Drago R, Nardi F, Bartolini G, Bellini E, De Rosa A, Valensin S, Kabanova A. Robust and cost-effective CRISPR/Cas9 gene editing of primary tumor B cells in Eµ-TCL1 model of chronic lymphocytic leukemia. Hemasphere 2024; 8:e134. [PMID: 39157689 PMCID: PMC11327113 DOI: 10.1002/hem3.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Affiliation(s)
| | - Roberta Drago
- Fondazione Toscana Life SciencesSienaItaly
- PhD Program in Translational and Precision MedicineUniversity of SienaSienaItaly
| | | | | | | | | | | | | |
Collapse
|
7
|
Tauchi T, Moriya S, Okabe S, Kazama H, Miyazawa K, Takano N. Vitamin K2 sensitizes the efficacy of venetoclax in acute myeloid leukemia by targeting the NOXA-MCL-1 pathway. PLoS One 2024; 19:e0307662. [PMID: 39052583 PMCID: PMC11271855 DOI: 10.1371/journal.pone.0307662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Promising outcomes have been reported in elder patients with acute myeloid leukemia (AML) using combined therapy of venetoclax (VEN) and azacytidine (AZA) in recent years. However, approximately one-third of patients appear to be refractory to this therapy. Vitamin K2 (VK2) shows apoptosis-inducing activity in AML cells, and daily oral VK2 (menaquinone-4, GlakayR) has been approved for patients with osteoporosis in Japan. We observed a high response rate to AZA plus VEN therapy, with no 8-week mortality in the newly diagnosed AML patients consuming daily VK2 in our hospital. The median age of the patients was 75.9 years (range 66-84) with high-risk features. Patients received AZA 75 mg/m2 on D1-7, VEN 400 mg on D1-28, and daily VK2 45 mg. The CR/CRi ratio was 94.7% (18/19), with a CR rate of 79%. Complete cytogenetic CR was achieved in 15 of 19 (79%) patients, and MRD negativity in 2 of 15 (13%) evaluable CR patients. Owing to the extremely high response rate in clinical settings, we further attempted to investigate the underlying mechanisms. The combination of VK2 and VEN synergistically induced apoptosis in all five AML cell lines tested. VK2, but not VEN, induced mitochondrial reactive oxygen species (ROS), leading to the transcriptional upregulation of NOXA, followed by MCL-1 repression. ROS scavengers repressed VK2 induced-NOXA expression and led to the cancellation of pronounced apoptosis and the downregulation of MCL-1 by VK2 plus VEN. Additionally, knockdown and knockout of NOXA resulted in abrogation of the MCL-1 repression as well as enhanced cytotoxicity by the two-drug combination, indicating that VK2 suppresses MCL-1 via ROS-mediated NOXA induction. These data suggest that the dual inhibition of BCL-2 by VEN and MCL-1 by VK2 is responsible for the remarkable clinical outcomes in our patients. Therefore, large-scale clinical trials are required.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Aged
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Vitamin K 2/pharmacology
- Vitamin K 2/analogs & derivatives
- Vitamin K 2/therapeutic use
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Female
- Male
- Aged, 80 and over
- Apoptosis/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Drug Synergism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Reactive Oxygen Species/metabolism
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Tetsuzo Tauchi
- Shinyurigaoka General Hospital, Asou-ku, Kawasaki, Kanagawa, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
8
|
Lou J, Zhou Q, Lyu X, Cen X, Liu C, Yan Z, Li Y, Tang H, Liu Q, Ding J, Lu Y, Huang H, Xie H, Zhao Y. Discovery of a Covalent Inhibitor That Overcame Resistance to Venetoclax in AML Cells Overexpressing BFL-1. J Med Chem 2024; 67:10795-10830. [PMID: 38913996 DOI: 10.1021/acs.jmedchem.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Clinical and biological studies have shown that overexpression of BFL-1 is one contributing factor to venetoclax resistance. The resistance might be overcome by a potent BFL-1 inhibitor, but such an inhibitor is rare. In this study, we show that 56, featuring an acrylamide moiety, inhibited the BFL-1/BID interaction with a Ki value of 105 nM. More interestingly, 56 formed an irreversible conjugation adduct at the C55 residue of BFL-1. 56 was a selective BFL-1 inhibitor, and its MCL-1 binding affinity was 10-fold weaker, while it did not bind BCL-2 and BCL-xL. Mechanistic studies showed that 56 overcame venetoclax resistance in isogenic AML cell lines MOLM-13-OE and MV4-11-OE, which both overexpressed BFL-1. More importantly, 56 and venetoclax combination promoted stronger apoptosis induction than either single agent. Collectively, our data show that 56 overcame resistance to venetoclax in AML cells overexpressing BFL-1. These attributes make 56 a promising candidate for future optimization.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/chemistry
- Sulfonamides/chemical synthesis
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/chemistry
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Line, Tumor
- Minor Histocompatibility Antigens/metabolism
- Apoptosis/drug effects
- Drug Discovery
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qianqian Zhou
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Xinyi Cen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Yan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Haotian Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qiupei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Jian Ding
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ye Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - He Huang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
9
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
10
|
Zheng H, Wu T, Lin Z, Wang D, Zhang J, Zeng T, Liu L, Shen J, Zhao M, Li JD, Yang M. Targeting BMAL1 reverses drug resistance of acute myeloid leukemia cells and promotes ferroptosis through HMGB1-GPX4 signaling pathway. J Cancer Res Clin Oncol 2024; 150:231. [PMID: 38703241 PMCID: PMC11069489 DOI: 10.1007/s00432-024-05753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Acute myeloid leukemia (AML) is a refractory hematologic malignancy that poses a serious threat to human health. Exploring alternative therapeutic strategies capable of inducing alternative modes of cell death, such as ferroptosis, holds great promise as a viable and effective intervention. METHODS We analyzed online database data and collected clinical samples to verify the expression and function of BMAL1 in AML. We conducted experiments on AML cell proliferation, cell cycle, ferroptosis, and chemotherapy resistance by overexpressing/knocking down BMAL1 and using assays such as MDA detection and BODIPY 581/591 C11 staining. We validated the transcriptional regulation of HMGB1 by BMAL1 through ChIP assay, luciferase assay, RNA level detection, and western blotting. Finally, we confirmed the results of our cell experiments at the animal level. RESULTS BMAL1 up-regulation is an observed phenomenon in AML patients. Furthermore, there existed a strong correlation between elevated levels of BMAL1 expression and inferior prognosis in individuals with AML. We found that knocking down BMAL1 inhibited AML cell growth by blocking the cell cycle. Conversely, overexpressing BMAL1 promoted AML cell proliferation. Moreover, our research results revealed that BMAL1 inhibited ferroptosis in AML cells through BMAL1-HMGB1-GPX4 pathway. Finally, knocking down BMAL1 can enhance the efficacy of certain first-line cancer therapeutic drugs, including venetoclax, dasatinib, and sorafenib. CONCLUSION Our research results suggest that BMAL1 plays a crucial regulatory role in AML cell proliferation, drug resistance, and ferroptosis. BMAL1 could be a potential important therapeutic target for AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Ferroptosis/drug effects
- HMGB1 Protein/metabolism
- HMGB1 Protein/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Mice, Nude
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Prognosis
- Signal Transduction
- Sulfonamides/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ting Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Dan Wang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Ting Zeng
- Department of Pediatrics, The Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jie Shen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Clinical Research Center of Pediatric Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Du M, Wang M, Liu M, Fu S, Lin Y, Huo Y, Yu J, Yu X, Wang C, Xiao H, Wang L. C/EBPα-p30 confers AML cell susceptibility to the terminal unfolded protein response and resistance to Venetoclax by activating DDIT3 transcription. J Exp Clin Cancer Res 2024; 43:79. [PMID: 38475919 DOI: 10.1186/s13046-024-02975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.
Collapse
Affiliation(s)
- Mengbao Du
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Meng Liu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yankun Huo
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chong Wang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Limengmeng Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
12
|
Jin D, Chen H, He J, Li Y, Zheng G, Yang Y, Zhao Y, Le J, Shu W, He D, Cai Z. Impact of AML1/ETO Fusion on the Efficacy of Venetoclax Plus Hypomethylating Agents in Newly Diagnosed Acute Myeloid Leukemia. Target Oncol 2024; 19:237-249. [PMID: 38466536 DOI: 10.1007/s11523-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AML1/ETO fusion confers favorable prognosis in acute myeloid leukemia (AML) treated with intensive chemotherapy (IC). However, the impact of AML1/ETO fusion on the efficacy of venetoclax in the treatment of AML is unclear. OBJECTIVE The aim of this study was to evaluate the efficacy of venetoclax plus hypomethylating agents (VEN/HMAs) in patients with AML1/ETO-positive AML. PATIENTS AND METHODS Patients with newly diagnosed AML in two centers were reviewed and divided into three cohorts: AML1/ETO-positive AML treated with frontline VEN/HMA (Cohort A), AML1/ETO-negative AML treated with frontline VEN/HMA (Cohort B), or AML1/ETO-positive AML treated with frontline IC (Cohort C). The response and survival were compared between the cohorts. RESULTS A total of 260 patients were included in the study. Patients in Cohort A had a significantly lower overall response rate (ORR) than patients in Cohort B (40.9% vs 71.2%, p = 0.005). The median event-free survival (EFS) in Cohort A and Cohort B was 2.7 months and 7.7 months, respectively, with no significant difference. The ORR and median EFS in Cohort C were 80.8% and 14.9 months, respectively, which were significantly superior to those in Cohort A, and the advantages remained significant after propensity score matching. ORR and EFS in KIT-mutated patients with AML1/ETO-positive AML receiving VEN/HMA were much inferior to those in KIT wild-type patients (ORR 0.0% vs 81.8%, p = 0.001; EFS 1.2 months vs not reached, p < 0.001). CONCLUSIONS Newly diagnosed AML patients with AML1/ETO fusion had a poor response to frontline VEN/HMA treatment. When determining induction therapy for patients with AML1/ETO-positive AML, IC should be preferred over VEN/HM.
Collapse
Affiliation(s)
- Dian Jin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Department of Hematology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315000, China
| | - Haoguang Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yang Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yi Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Jing Le
- Department of Hematology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315000, China
| | - Wenxiu Shu
- Department of Hematology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, 315000, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun road, Hangzhou, 310003, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
13
|
Mohanty V, Baran N, Huang Y, Ramage CL, Cooper LM, He S, Iqbal R, Daher M, Tyner JW, Mills GB, Konopleva M, Chen K. Transcriptional and phenotypic heterogeneity underpinning venetoclax resistance in AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577579. [PMID: 38352538 PMCID: PMC10862759 DOI: 10.1101/2024.01.27.577579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The venetoclax BCL2 inhibitor in combination with hypomethylating agents represents a cornerstone of induction therapy for older AML patients, unfit for intensive chemotherapy. Like other targeted therapies, venetoclax-based therapies suffer from innate and acquired resistance. While several mechanisms of resistance have been identified, the heterogeneity of resistance mechanism across patient populations is poorly understood. Here we utilized integrative analysis of transcriptomic and ex-vivo drug response data in AML patients to identify four transcriptionally distinct VEN resistant clusters (VR_C1-4), with distinct phenotypic, genetic and drug response patterns. VR_C1 was characterized by enrichment for differentiated monocytic- and cDC-like blasts, transcriptional activation of PI3K-AKT-mTOR signaling axis, and energy metabolism pathways. They showed sensitivity to mTOR and CDK inhibition. VR_C2 was enriched for NRAS mutations and associated with distinctive transcriptional suppression of HOX expression. VR_C3 was characterized by enrichment for TP53 mutations and higher infiltration by cytotoxic T cells. This cluster showed transcriptional expression of erythroid markers, suggesting tumor cells mimicking erythroid differentiation, activation of JAK-STAT signaling, and sensitivity to JAK inhibition, which in a subset of cases synergized with venetoclax. VR_C4 shared transcriptional similarities with venetoclax-sensitive patients, with modest over-expression of interferon signaling. They were also characterized by high rates of DNMT3A mutations. Finally, we projected venetoclax-resistance states onto single cells profiled from a patient who relapsed under venetoclax therapy capturing multiple resistance states in the tumor and shifts in their abundance under venetoclax selection, suggesting that single tumors may consist of cells mimicking multiple VR_Cs contributing to intra-tumor heterogeneity. Taken together, our results provide a strategy to evaluate inter- and intra-tumor heterogeneity of venetoclax resistance mechanisms and provide insights into approaches to navigate further management of patients who failed therapy with BCL2 inhibitors.
Collapse
Affiliation(s)
- Vakul Mohanty
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Yuefan Huang
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - Cassandra L Ramage
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Laurie M Cooper
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Shan He
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - Ramiz Iqbal
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University
| | - Marina Konopleva
- Department of Medicine (Oncology) and Molecular Pharmacology, Albert Einstein College of Medicine
| | - Ken Chen
- Department of Bioinformatics and Computational biology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|