1
|
Gao Y, Yan W, Sun L, Zhang X. PiRNA hsa_piR_019914 Promoted Chondrocyte Anabolic Metabolism By Inhibiting LDHA-Dependent ROS Production. Cartilage 2024; 15:303-314. [PMID: 37431854 PMCID: PMC11418426 DOI: 10.1177/19476035231181094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common joint disease. The occurrence and progression of OA are regulated by epigenetics. A large number of studies have shown the important regulatory role of noncoding RNAs in joint diseases. As the largest class of noncoding small RNAs, the importance of piRNAs in many diseases, especially cancer, has been increasingly recognized. However, few studies have explored the role of piRNAs in OA. Our study showed that hsa_piR_019914 decreased significantly in OA. This study aimed to demonstrate the role of hsa_piR_019914 as a potential biological target of OA in chondrocytes. DESIGN The GEO database and bioinformatics analysis were used for a series of screenings, and the OA model using human articular chondrocytes (C28/I2 cells), SW1353 cells under inflammatory factor stimulation was used to determine that hsa_piR_019914 was significantly downregulated in OA. Overexpression or inhibition of hsa_piR_019914 in C28/I2 cells was achieved by transfecting mimics or inhibitors. The effect of hsa_piR_019914 on the biological function of chondrocytes was verified by qPCR, flow cytometry, and colony formation assays in vitro. The target gene of hsa_piR_019914, lactate dehydrogenase A (LDHA), was screened by small RNA sequencing and quantitative polymerase chain reaction (qPCR), LDHA was knocked out in C28/I2 cells by the transfection of siRNA LDHA, and the relationship between hsa_piR_019914, LDHA, and reactive oxygen species (ROS) production was verified by flow cytometry. RESULTS The piRNA hsa-piR-019914 was significantly downregulated in osteoarthritis (OA). Hsa-piR-019914 reduced inflammation-mediated chondrocyte apoptosis and maintained cell proliferation and clone formation in vitro. Hsa-piR-019914 reduced the production of LDHA-dependent ROS through targeted regulation of LDHA expression, maintained chondrocyte-specific gene expression of ACAN and COL2, and inhibited the gene expression of MMP3 and MMP13. CONCLUSIONS Collectively, this study showed that hsa_piR_019914 was negatively correlated with the expression of LDHA, which mediates ROS production. Under the stimulation of inflammatory factors, overexpression of hsa_piR_019914 had a protective effect on chondrocytes in vitro, and the absence of hsa_piR_019914 exacerbated the negative effect of inflammation on chondrocytes. Studies on piRNAs provide new therapeutic interventions for OA.
Collapse
Affiliation(s)
- YuXuan Gao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
| | - Wen Yan
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Soochow, P.R. China
| | - Liangye Sun
- Department of Orthopedic Surgery, Luan Hospital, Anhui Medical University, Luan, China
| | - XiaoLing Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, P.R. China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
2
|
Parreira JR, Hernández-Castellano LE, Argüello A, Capote J, Castro N, de Sousa Araújo S, de Almeida AM. Understanding seasonal weight loss tolerance in dairy goats: a transcriptomics approach. BMC Genomics 2020; 21:629. [PMID: 32928114 PMCID: PMC7489022 DOI: 10.1186/s12864-020-06968-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Seasonal weight loss (SWL) is a very important limitation to the production of ruminants in the Mediterranean and Tropical regions. In these areas, long dry seasons lead to poor pastures with low nutritional value. During the dry season, ruminants, particularly those raised in extensive production systems, lose around 30% of their body weight. Seasonal weight loss has important consequences on animal productive performance and health. In this study, RNA sequencing was used to characterize feed restriction effects in dairy goat of 2 breeds with different SWL tolerance: Majorera (tolerant) and Palmera (susceptible). Nine Majorera and ten Palmera goats were randomly distributed in a control and a restricted group: Majorera Control (adequately fed; MC; n = 4), Palmera Control (adequately fed; PC; n = 6), Majorera Restricted (feed restricted; ME; n = 5) and Palmera Restricted (feed restricted; PE; n = 4). On day 22 of the trial, mammary gland biopsies were collected for transcriptomics analysis. Results From these samples, 24,260 unique transcripts were identified. From those, 82 transcripts were differentially expressed between MC and ME, 99 between PC and PE, twelve between both control groups and twenty-nine between both restricted groups. Conclusions Feed restriction affected several biochemical pathways in both breeds such as: carbohydrate and lipid transport; intracellular trafficking, RNA processing and signal transduction. This research also highlights the importance or involvement of the genes in tolerance (ENPP1, S-LZ, MT2A and GPNB) and susceptibility (GPD1, CTPS1, ELOVL6 and NR4A1) to SWL with respectively higher expression in the Majorera restriced group and the Palmera restricted group in comparison to the control groups. In addition, results from the study may be extrapolated to other dairy ruminant species.
Collapse
Affiliation(s)
- José Ricardo Parreira
- IBET - Instituto de Biologia Experimental e Tecnológica, Av. da República, 2780-157, Oeiras, Portugal.,ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | - Anastasio Argüello
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Juan Capote
- Unit of Animal Production, Pasture, and Forage in Arid and Subtropical Areas, Canary Islands Institute for Agricultural Research, 38270, La Laguna, Spain
| | - Noemí Castro
- Animal Production and Biotechnology group, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35413, Arucas, Spain
| | - Susana de Sousa Araújo
- ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture And Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 13409-017, Lisbon, Portugal.
| |
Collapse
|
3
|
Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, Zhou Q, Zeng G, Hu X, Yu L, Zhou S, Tong X, Huang H, Chen H, Liu Q, Liu W, Zhang G, Zeng M, Zhou G, He Q, Ji H, Chen L. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun 2019; 10:1665. [PMID: 30971692 PMCID: PMC6458308 DOI: 10.1038/s41467-019-09295-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/05/2019] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Tumor suppressor genes remain to be systemically identified for lung cancer. Through the genome-wide screening of tumor-suppressive transcription factors, we demonstrate here that GATA4 functions as an essential tumor suppressor in lung cancer in vitro and in vivo. Ectopic GATA4 expression results in lung cancer cell senescence. Mechanistically, GATA4 upregulates multiple miRNAs targeting TGFB2 mRNA and causes ensuing WNT7B downregulation and eventually triggers cell senescence. Decreased GATA4 level in clinical specimens negatively correlates with WNT7B or TGF-β2 level and is significantly associated with poor prognosis. TGFBR1 inhibitors show synergy with existing therapeutics in treating GATA4-deficient lung cancers in genetically engineered mouse model as well as patient-derived xenograft (PDX) mouse models. Collectively, our work demonstrates that GATA4 functions as a tumor suppressor in lung cancer and targeting the TGF-β signaling provides a potential way for the treatment of GATA4-deficient lung cancer. The tumor suppressor GATA4 is frequently epigenetically silenced in lung cancer. In this study, Gao et al. demonstrate that GATA4 regulates the expression of TGFBR2 and that TGFRB1 inhibitors can synergise with chemotherapeutics to inhibit the growth of GATA4-deficient tumors in mice.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China.,College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yong Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Yahui Tian
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Zhenzhen Fan
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China.,College of Biological Sciences, China Agricultural University, 100094, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China
| | - Hongdan Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Qian Zhou
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Guandi Zeng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Xin Hu
- The University of Texas Health Science Center at Houston (UTHealth), 2450 Holcombe Blvd., Suite 1, Houston, TX, 77021, USA
| | - Lei Yu
- Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Shiyu Zhou
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hsinyi Huang
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, 230031, Hefei, Anhui, China
| | - Wanting Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Musheng Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qingyu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China. .,CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China. .,Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, China. .,School of Life Science and Technology, Shanghai Tech University, 200120, Shanghai, China.
| | - Liang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
4
|
Liu M, Lei H, Dong P, Fu X, Yang Z, Yang Y, Ma J, Liu X, Cao Y, Xiao R. Adipose-Derived Mesenchymal Stem Cells from the Elderly Exhibit Decreased Migration and Differentiation Abilities with Senescent Properties. Cell Transplant 2018; 26:1505-1519. [PMID: 29113467 PMCID: PMC5680952 DOI: 10.1177/0963689717721221] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ASCs) can be applied extensively in the clinic because they can be easily isolated and cause less donor-site morbidity; however, their application can be complicated by patient-specific factors, such as age and harvest site. In this study, we systematically evaluated the effects of age on the quantity and quality of human adipose-derived mesenchymal stem cells (hASCs) isolated from excised chest subcutaneous adipose tissue and investigated the underlying molecular mechanism. hASCs were isolated from donors of 3 different age-groups (i.e., child, young adult, and elderly). hASCs are available from individuals across all age-groups and maintain mesenchymal stem cell (MSC) characteristics. However, the increased age of the donors was found to have a significant negative effect on hASCs frequency base on colony-forming unit fibroblasts assay. Moreover, there is a decline in both stromal vascular fraction (SVF) cell yield and the proliferation rate of hASCs with increasing age, although this relationship is not significant. Aging increases cellular senescence, which is manifested as an increase in SA-β-gal-positive cells, increased mitochondrial-specific reactive oxygen species (ROS) production, and the expression of p21 in the elderly. Further, advancing age was found to have a significant negative effect on the adipogenic and osteogenic differentiation potentials of hASCs, particularly at the early and mid-stages of induction, suggesting a slower response to the inducing factors of hASCs from elderly donors. Finally, impaired migration ability was also observed in the elderly group and was determined to be associated with decreased expression of chemokine receptors, such as CXCR4 and CXCR7. Taken together, these results suggest that, while hASCs from different age populations are phenotypically similar, they present major differences at the functional level. When considering potential applications of hASCs in cell-based therapeutic strategies, the negative influence of age on hASC differentiation potential and migration abilities should be taken seriously.
Collapse
Affiliation(s)
- Meichen Liu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hua Lei
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ping Dong
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ying Yang
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiguang Ma
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- 1 Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
5
|
Loisel S, Dulong J, Ménard C, Renoud ML, Meziere N, Isabelle B, Latour M, Bescher N, Pedeux R, Bertheuil N, Flecher E, Sensebé L, Tarte K. Brief Report: Proteasomal Indoleamine 2,3-Dioxygenase Degradation Reduces the Immunosuppressive Potential of Clinical Grade-Mesenchymal Stromal Cells Undergoing Replicative Senescence. Stem Cells 2017; 35:1431-1436. [DOI: 10.1002/stem.2580] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/12/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Séverine Loisel
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Joëlle Dulong
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Cédric Ménard
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Marie-Laure Renoud
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | | | - Bezier Isabelle
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Maëlle Latour
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Nadège Bescher
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| | - Rémy Pedeux
- UMR U917, INSERM, Université Rennes 1; Rennes France
- UMR U1242, INSERM; Centre Eugéne Marquis; Rennes, France
| | - Nicolas Bertheuil
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
- Department of Plastic; Reconstructive and Aesthetic Surgery
| | - Erwan Flecher
- Department of Thoracic and Cardiac Surgery; CHU Rennes; France
| | - Luc Sensebé
- Etablissement Français du Sang Pyrénées Méditerranée, Université Paul Sabatier; UMR5273-INSERM U1031 Toulouse France
| | - Karin Tarte
- SITI Laboratory; Etablissement Français du Sang; CHU Rennes France
- UMR U917, INSERM, Université Rennes 1; Rennes France
| |
Collapse
|
6
|
Capasso S, Alessio N, Squillaro T, Di Bernardo G, Melone MA, Cipollaro M, Peluso G, Galderisi U. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells. Oncotarget 2015; 6:39457-39468. [PMID: 26540573 PMCID: PMC4741838 DOI: 10.18632/oncotarget.6277] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/02/2015] [Indexed: 12/11/2022] Open
Abstract
A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes.
Collapse
Affiliation(s)
- Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Mariarosa A. Melone
- Institute of Bioscience and Bioresources, CNR, Naples, Italy
- Department of Clinical and Experimental Medicine and Surgery, Division of Neurology, Second University of Naples, Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | | | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
- Institute of Bioscience and Bioresources, CNR, Naples, Italy
| |
Collapse
|