1
|
Heller C, Bachmann I, Spiegel M, Hufert FT, Dame G. Detection of Klebsiella pneumoniae Carbapenem Resistance Genes by qPCR: Choosing the Right Method for Total DNA Extraction. Microorganisms 2024; 12:1285. [PMID: 39065054 PMCID: PMC11278521 DOI: 10.3390/microorganisms12071285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Rapid and accurate detection of Klebsiella pneumoniae carbapenem resistance is important for infection control and targeted antibiotic therapy. PCR-based assay performance heavily depends on the quality and quantity of template DNA. Challenges arise from the necessity to isolate chromosomal and large plasmid-encoded resistance genes simultaneously from a limited number of target cells and to remove PCR inhibitors. qPCRs for the detection of K. pneumoniae strains carrying blaOXA-48, blaNDM-1, blaKPC-2, and blaVIM-1 carbapenemase genes were developed. We compared the performance of template DNA extracted with silica column-based methods, reversed elution systems, and lysis-only methods either from diluted culture fluid or from a synthetic stool matrix which contained PCR inhibitors typically present in stool. The synthetic stool matrix was chosen to mimic K. pneumoniae containing rectal swabs or stool samples in a reproducible manner. For total DNA isolated from culture fluid, resistance gene detection by qPCR was always possible, independent of the extraction method. However, when total DNA was isolated from synthetic stool matrix spiked with K. pneumoniae, most methods were insufficient. The best performance of template DNA was obtained with reversed elution. This highlights the importance of choosing the right DNA extraction method for consistent carbapenem resistance detection by PCR.
Collapse
Affiliation(s)
- Cecilia Heller
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
| | - Iris Bachmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
| | - Martin Spiegel
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Frank T. Hufert
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Am Neuen Palais 10, House 9, 14469 Potsdam, Germany
| | - Gregory Dame
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968 Senftenberg, Germany; (C.H.); (I.B.); (M.S.); (F.T.H.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Am Neuen Palais 10, House 9, 14469 Potsdam, Germany
| |
Collapse
|
2
|
Slimene K, Salabi AE, Dziri O, Mathlouthi N, Diene SM, Mohamed EA, Amhalhal JMA, Aboalgasem MO, Alrjael JF, Rolain JM, Chouchani C. Epidemiology, Phenotypic and Genotypic Characterization of Carbapenem-Resistant Gram-Negative Bacteria from a Libyan Hospital. Microb Drug Resist 2023. [PMID: 37145891 DOI: 10.1089/mdr.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Antimicrobial resistance, particularly resistance to carbapenems, has become one of the major threats to public health. Seventy-two isolates were collected from patients and hospital environment of Ibn Sina Hospital, Sirte, Libya. Antibiotic susceptibility tests, using the disc diffusion method and E-Test strips, were performed to select carbapenem-resistant strains. The colistin (CT) resistance was also tested by determining the minimum inhibitory concentration (MIC). RT-PCR was conducted to identify the presence of carbapenemase encoding genes and plasmid-mediated mcr CT resistance genes. Standard PCR was performed for positive RT-PCR and the chromosome-mediated CT resistance genes (mgrB, pmrA, pmrB, phoP, phoQ). Gram-negative bacteria showed a low susceptibility to carbapenems. Molecular investigations indicated that the metallo-β-lactamase New Delhi metallo-beta-lactamases-1 was the most prevalent (n = 13), followed by Verona integron-encoded metallo-beta-lactamase (VIM) enzyme (VIM-2 [n = 6], VIM-1 [n = 1], and VIM-4 [n = 1]) that mainly detected among Pseudomonas spp. The oxacillinase enzyme OXA-23 was detected among six Acinetobacter baumannii, and OXA-48 was detected among one Citrobacter freundii and three Klebsiella pneumoniae, in which one coharbored the Klebsiella pneumoniae carbapenemase enzyme and showed resistance to CT (MIC = 64 μg/mL) by modification in pmrB genes. In this study, we report for the first time the emergence of Pseudomonas aeruginosa carrying the blaNDM-1 gene and belonging to sequence type773 in Libya. Our study reported also for the first time CT resistance by mutation in the pmrB gene among Enterobacteriaceae isolates in Libya.
Collapse
Affiliation(s)
- Khouloud Slimene
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Allaaeddin El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Olfa Dziri
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Najla Mathlouthi
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| | - Seydina M Diene
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | | | - Jadalla M A Amhalhal
- Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Sirte University, Sirte, Libya
- ICU Department, Ibn Sina Hospital, Sirte, Libya
| | - Mohammed O Aboalgasem
- Department of Internal Medicine, Faculty of Medicine, University of Sirte, Sirte, Libya
- Infection Prevention and Patient Safety Office, Ibn Sina Hospital, Sirte, Libya
| | - Jomaa F Alrjael
- ICU Department, Ibn Sina Hospital, Sirte, Libya
- Department of Anesthesia, Ibn Sina Hospital, Sirte, Libya
| | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix-Marseille Université, IRD, APHM, MEPHI, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l'Environnement, Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
- Unité de Service en Commun Pour la Recherche « Plateforme Génomique » Institut Supérieur des Sciences et Technologies de l'Environnement de Borj-Cedria, Université de Carthage, Tunis, Tunisie
| |
Collapse
|
3
|
Abdul Rahim N, Zhu Y, Cheah SE, Johnson MD, Yu HH, Sidjabat HE, Butler MS, Cooper MA, Fu J, Paterson DL, Nation RL, Boyce JD, Creek DJ, Bergen PJ, Velkov T, Li J. Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae Is Predominately Driven by Chloramphenicol. ACS Infect Dis 2021; 7:1584-1595. [PMID: 33834753 DOI: 10.1021/acsinfecdis.0c00661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbapenem-resistant Klebsiella pneumoniae has been classified as an Urgent Threat by the Centers for Disease Control and Prevention (CDC). The combination of two "old" antibiotics, polymyxin and chloramphenicol, displays synergistic killing against New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae. However, the mechanism(s) underpinning their synergistic killing are not well studied. We employed an in vitro pharmacokinetic/pharmacodynamic model to mimic the pharmacokinetics of the antibiotics in patients and examined bacterial killing against NDM-producing K. pneumoniae using a metabolomic approach. Metabolomic analysis was integrated with an isolate-specific genome-scale metabolic network (GSMN). Our results show that metabolic responses to polymyxin B and/or chloramphenicol against NDM-producing K. pneumoniae involved the inhibition of cell envelope biogenesis, metabolism of arginine and nucleotides, glycolysis, and pentose phosphate pathways. Our metabolomic and GSMN modeling results highlight the novel mechanisms of a synergistic antibiotic combination at the network level and may have a significant potential in developing precision antimicrobial chemotherapy in patients.
Collapse
Affiliation(s)
- Nusaibah Abdul Rahim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew D. Johnson
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Heidi H. Yu
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Hanna E. Sidjabat
- University of Queensland Centre for Clinical Research, Herston, Queensland 4029, Australia
| | - Mark S. Butler
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - David L. Paterson
- University of Queensland Centre for Clinical Research, Herston, Queensland 4029, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital Campus, Herston, Queensland 4029, Australia
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John D. Boyce
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Phillip J. Bergen
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre for Medicine Use and Safety, Monash University, Parkville, Victoria 3052, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Qamar MU, Ejaz H, Walsh TR, Shah AA, Al Farraj DA, Alkufeidy RM, Alkubaisi NA, Saleem S, Jahan S. Clonal relatedness and plasmid profiling of extensively drug-resistant New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae clinical isolates. Future Microbiol 2021; 16:229-239. [PMID: 33625250 DOI: 10.2217/fmb-2020-0315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Carbapenem-resistant Klebsiella pneumoniae (CR-KP) particularly New Delhi metallo-β-lactamase (NDM) is a serious public health concern globally. The aim of the study to determine the molecular epidemiology of blaNDM-producing clinically isolated K. pneumoniae. Methods: Carbapenem-resistant K. pneumoniae isolates (n = 100) were collected from tertiary care hospital Lahore. Isolates were confirmed by VITEK® 2 system and MALDI-TOF. Minimum inhibitory concentration was performed by VITEK 2 and molecular characterization was done by PCR, PFGE, DNA hybridization and replicon typing. Results: Of 90 MBL-producing K. pneumoniae, 75 were NDM producers; 60 were NDM-1 and 11 NDM-5. A total of 27 K. pneumoniae belonged to ST11 and 14 to ST147. NDM-positive isolates were 100% resistant to β-lactam antibiotics except for colistin. 13.3% isolates carried blaNDM on ∼140 kb plasmids. A total of 32 (52.4%) isolates were positive for IncA/C and 18 (29.5%) IncF/II. Conclusion: The extensively resistant lineage of NDM-producing K. pneumoniae is prevalent in the clinical setting.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.,Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Timothy R Walsh
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Asad Ali Shah
- Department of Bioinformatic & Biotechnology, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Dunia A Al Farraj
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Roua M Alkufeidy
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Lahore, 54600, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54600, Pakistan
| |
Collapse
|
5
|
Politi L, Gartzonika K, Spanakis N, Zarkotou O, Poulou A, Skoura L, Vrioni G, Tsakris A. Emergence of NDM-1-producing Klebsiella pneumoniae in Greece: evidence of a widespread clonal outbreak. J Antimicrob Chemother 2020; 74:2197-2202. [PMID: 31065697 DOI: 10.1093/jac/dkz176] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES NDM-producing Enterobacteriaceae clinical isolates remain uncommon in the European region. We describe the emergence and broad dissemination of one successful NDM-1-producing Klebsiella pneumoniae clone in Greek hospitals. METHODS During a 4 year survey (January 2013-December 2016), 480 single-patient carbapenem non-susceptible K. pneumoniae isolates, phenotypically MBL positive, were consecutively recovered in eight Greek hospitals from different locations and subjected to further investigation. Antimicrobial susceptibility testing, combined-disc test, identification of resistance genes by PCR and sequencing, molecular fingerprinting by PFGE, plasmid profiling, replicon typing, conjugation experiments and MLST were performed. RESULTS Molecular analysis confirmed the presence of the blaNDM-1 gene in 341 (71%) K. pneumoniae isolates. A substantially increasing trend of NDM-1-producing K. pneumoniae was noticed during the survey (R2 = 0.9724). Most blaNDM-1-carrying isolates contained blaCTX-M-15, blaOXA-1, blaOXA-2 and blaTEM-1 genes. PFGE analysis clustered NDM-1 producers into five distinct clonal types, with five distinct STs related to each PFGE clone. The predominant ST11 PFGE clonal type was detected in all eight participating hospitals, despite adherence to the national infection control programme; it was identical to that observed in the original NDM-1 outbreak in Greece in 2011, as well as in a less-extensive NDM-1 outbreak in Bulgaria in 2015. The remaining four ST clonal types (ST15, ST70, ST258 and ST1883) were sporadically detected. blaNDM-1 was located in IncFII-type plasmids in all five clonal types. CONCLUSIONS This study gives evidence of possibly the largest NDM-1-producing K. pneumoniae outbreak in Europe; it may also reinforce the hypothesis of an NDM-1 clone circulating in the Balkans.
Collapse
Affiliation(s)
- Lida Politi
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | | | - Nicholas Spanakis
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Olympia Zarkotou
- Department of Microbiology, Tzaneio General Hospital, Piraeus, Greece
| | - Aggeliki Poulou
- Department of Microbiology, Serres General Hospital, Serres, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
6
|
MgrB Inactivation Is Responsible for Acquired Resistance to Colistin in Enterobacter hormaechei subsp. steigerwaltii. Antimicrob Agents Chemother 2020; 64:AAC.00128-20. [PMID: 32253218 DOI: 10.1128/aac.00128-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant strains belonging to the Enterobacter cloacae complex (ECC) group, and especially those belonging to clusters C-III, C-IV, and C-VIII, have increasingly emerged as a leading cause of health care-associated infections, with colistin used as one of the last lines of treatment. However, colistin-resistant ECC strains have emerged. The aim of this study was to prove that MgrB, the negative regulator of the PhoP/PhoQ two-component regulatory system, is involved in colistin resistance in ECC of cluster C-VIII, formerly referred to as Enterobacter hormaechei subsp. steigerwaltii An in vitro mutant (Eh22-Mut) was selected from a clinical isolate of Eh22. The sequencing analysis of its mgrB gene showed the presence of one nucleotide deletion leading to the formation of a truncated protein of six instead of 47 amino acids. The wild-type mgrB gene from Eh22 and that of a clinical strain of Klebsiella pneumoniae used as controls were cloned, and the corresponding recombinant plasmids were used for complementation assays. The results showed a fully restored susceptibility to colistin and confirmed for the first time that mgrB gene expression plays a key role in acquired resistance to colistin in ECC strains.
Collapse
|
7
|
Environmental Prevalence of Carbapenem Resistance Enterobacteriaceae (CRE) in a Tropical Ecosystem in India: Human Health Perspectives and Future Directives. Pathogens 2019; 8:pathogens8040174. [PMID: 31581701 PMCID: PMC6963203 DOI: 10.3390/pathogens8040174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 01/21/2023] Open
Abstract
In the past few decades, infectious diseases have become increasingly challenging to treat, which is explained by the growing number of antibiotic-resistant bacteria. Notably, carbapenem-resistant Enterobacteriaceae (CRE) infections at global level attribute a vast, dangerous clinical threat. In most cases, there are enormous difficulties for CRE infection except a few last resort toxic drugs such as tigecycline and colistin (polymyxin E). Due to this, CRE has now been categorized as one among the three most dangerous multidrug resistance (MDR) pathogens by the US Centres for Disease Control and Prevention (CDC). Considering this, the study of the frequency of CRE infections and the characterization of CRE is an important area of research in clinical settings. However, MDR bacteria are not only present in hospitals but are spreading more and more into the environment, thereby increasing the risk of infection with resistant bacteria outside the hospital. In this context, developing countries are a global concern where environmental regulations are often insufficient. It seems likely that overcrowding, poor sanitation, socioeconomic status, and limited infrastructures contribute to the rapid spread of MDR bacteria, becoming their reservoirs in the environment. Thus, in this review, we present the occurrence of CRE and their resistance determinants in different environmental compartments in India.
Collapse
|
8
|
Singha M, Kumar G, Jain D, Kumar N G, Ray D, Ghosh AS, Basak A. Rapid Fluorescent-Based Detection of New Delhi Metallo-β-Lactamases by Photo-Cross-Linking Using Conjugates of Azidonaphthalimide and Zinc(II)-Chelating Motifs. ACS OMEGA 2019; 4:10891-10898. [PMID: 31460186 PMCID: PMC6648899 DOI: 10.1021/acsomega.9b01145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
A method for rapid detection of metallo-β-lactamases NDM-5 and NDM-7 using conjugates of azidonaphthalimide and Zn(II) chelating motifs (like sulfonamides, hydroxamate, and terpyridine) is described. Incubation and irradiation, followed by gel electrophoresis, clearly show the presence of NDMs. The o-sulfonamide-based probe has the highest efficiency of detection for both the NDMs. The proteins are detectable at nM concentrations, and the method is also selective, works both in vitro and in vivo, as revealed by cellular imaging and also with clinical isolates.
Collapse
Affiliation(s)
- Monisha Singha
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Gaurav Kumar
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Diamond Jain
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Ganesh Kumar N
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Debashis Ray
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Anindya S. Ghosh
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| | - Amit Basak
- Department
of Chemistry, Department of Biotechnology, and School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302 India
| |
Collapse
|
9
|
Novel Polymyxin Combination with the Antiretroviral Zidovudine Exerts Synergistic Killing against NDM-Producing Multidrug-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.02176-18. [PMID: 30670431 DOI: 10.1128/aac.02176-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Polymyxins are used as a last-line therapy against multidrug-resistant (MDR) New Delhi metallo-β-lactamase (NDM)-producing Klebsiella pneumoniae However, polymyxin resistance can emerge with monotherapy; therefore, novel strategies are urgently needed to minimize the resistance and maintain their clinical utility. This study aimed to investigate the pharmacodynamics of polymyxin B in combination with the antiretroviral drug zidovudine against K. pneumoniae Three isolates were evaluated in static time-kill studies (0 to 64 mg/liter) over 48 h. An in vitro one-compartment pharmacokinetic/pharmacodynamic (PK/PD) model (IVM) was used to simulate humanized dosage regimens of polymyxin B (4 mg/liter as continuous infusion) and zidovudine (as bolus dose thrice daily to achieve maximum concentration of drug in broth [C max] of 6 mg/liter) against K. pneumoniae BM1 over 72 h. The antimicrobial synergy of the combination was further evaluated in a murine thigh infection model against K. pneumoniae 02. In the static time-kill studies, polymyxin B monotherapy produced rapid and extensive killing against all three isolates followed by extensive regrowth, whereas zidovudine produced modest killing followed by significant regrowth at 24 h. Polymyxin B in combination with zidovudine significantly enhanced the antimicrobial activity (≥4 log10 CFU/ml) and minimized bacterial regrowth. In the IVM, the combination was synergistic and the total bacterial loads were below the limit of detection for up to 72 h. In the murine thigh infection model, the bacterial burden at 24 h in the combination group was ≥3 log10 CFU/thigh lower than each monotherapy against K. pneumoniae 02. Overall, the polymyxin B-zidovudine combination demonstrates superior antimicrobial efficacy and minimized emergence of resistance to polymyxins.
Collapse
|
10
|
DZIRI O, ALONSO CA, DZIRI R, GHARSA H, MARAOUB A, TORRES C, CHOUCHANI C. Metallo-β-lactamases and class D carbapenemases in south-east Tunisia: Implication of mobile genetic elements in their dissemination. Int J Antimicrob Agents 2018; 52:871-877. [DOI: 10.1016/j.ijantimicag.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/14/2018] [Accepted: 06/02/2018] [Indexed: 10/28/2022]
|
11
|
Yarlagadda V, Sarkar P, Samaddar S, Manjunath GB, Mitra SD, Paramanandham K, Shome BR, Haldar J. Vancomycin Analogue Restores Meropenem Activity against NDM-1 Gram-Negative Pathogens. ACS Infect Dis 2018; 4:1093-1101. [PMID: 29726673 DOI: 10.1021/acsinfecdis.8b00011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is the major contributor to the emergence of carbapenem resistance in Gram-negative pathogens (GNPs) and has caused many clinically available β-lactam antibiotics to become obsolete. A clinically approved inhibitor of metallo-β-lactamase (MBL) that could restore the activity of carbapenems against resistant GNPs has not yet been found, making NDM-1 a serious threat to human health. Here, we have rationally developed an inhibitor for the NDM-1 enzyme, which has the ability to penetrate the outer membrane of GNPs and inactivate the enzyme by depleting the metal ion (Zn2+) from the active site. The inhibitor reinstated the activity of meropenem against NDM-1 producing clinical isolates of GNPs like Klebsiella pneumoniae and Escherichia coli. Further, the inhibitor efficiently restored meropenem activity against NDM-1 producing K. pneumoniae in a murine sepsis infection model. These findings demonstrate that a combination of the present inhibitor and meropenem has high potential to be translated clinically to combat carbapenem-resistant GNPs.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Goutham Belagula Manjunath
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Susweta Das Mitra
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064, India
| | - Bibek Ranjan Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
12
|
ElMahallawy HA, Zafer MM, Amin MA, Ragab MM, Al-Agamy MH. Spread of carbapenem resistant Enterobacteriaceae at tertiary care cancer hospital in Egypt. Infect Dis (Lond) 2018; 50:560-564. [PMID: 29373938 DOI: 10.1080/23744235.2018.1428824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Hadir A ElMahallawy
- a Department of Clinical Pathology , National Cancer Institute, Cairo University , Cairo , Egypt
| | - Mai M Zafer
- b Department of Microbiology and Immunology, Faculty of Pharmacy , Ahram Canadian University , 6th of October , Egypt
| | - Magdy A Amin
- c Department of Microbiology and Immunology, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Mai M Ragab
- c Department of Microbiology and Immunology, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Mohamed H Al-Agamy
- d Department of Pharmaceutics , College of Pharmacy,King Saud University , Riyadh , Saudi Arabia.,e Department of Microbiology and Immunology, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| |
Collapse
|
13
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Shoja S, Ansari M, Faridi F, Azad M, Davoodian P, Javadpour S, Farahani A, Mobarrez BD, Karmostaji A. Identification of Carbapenem-Resistant Klebsiella pneumoniae with Emphasis on New Delhi Metallo-Beta-Lactamase-1 (bla NDM-1) in Bandar Abbas, South of Iran. Microb Drug Resist 2017; 24:447-454. [PMID: 28972857 DOI: 10.1089/mdr.2017.0058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The spread of carbapenem-resistant Klebsiella pneumoniae especially blaNDM-1-carrying isolates is a great concern worldwide. In this study we describe the molecular basis of carbapenem-resistant K. pneumoniae in three teaching hospitals at Bandar Abbas, south of Iran. MATERIALS AND METHODS A total of 170 nonduplicate clinical isolates of K. pneumoniae were investigated. Antimicrobial susceptibility test was performed by disc diffusion method. PCR was carried out for detection of carbapenemase (blaKPC, blaIMP, blaVIM, blaNDM, blaSPM, blaOXA-48, and blaOXA-181) and extended-spectrum β-lactamase (blaCTX-M, blaSHV, blaTEM, blaVEB, blaGES, and blaPER). Clonal relatedness of blaNDM-1-positive isolates was evaluated by multilocus sequence typing (MLST). RESULTS Tigecycline was the most effective antimicrobial agent with 96.5% susceptibility. In addition, 6.5% of the isolates were carbapenem resistant. BlaNDM-1 was identified in four isolates (isolate A-D) and all of them were multidrug-resistant. MLST revealed that blaNDM-1-positive isolates were clonally related and belonged to two distinct clonal complexes, including sequence type (ST) 13 and ST 392. In addition to blaNDM-1, isolate A coharbored blaSHV-11, blaCTX-M-15, and blaTEM-1, isolate B harbored blaSHV-11 and blaCTX-M-15, and isolates C and D contained both blaSHV-1 and blaCTX-M-15. CONCLUSION Our results indicate that NDM-1-producing K. pneumoniae ST 13 and ST 392 are disseminated in our region. Moreover, one of our major concerns is that these isolates may be more prevalent in the near future. Tracking and urgent intervention is necessary for control and prevention of these resistant isolates.
Collapse
Affiliation(s)
- Saeed Shoja
- 1 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Maryam Ansari
- 1 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Forogh Faridi
- 2 Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Mohsen Azad
- 2 Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Parivash Davoodian
- 1 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Sedigheh Javadpour
- 1 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Abbas Farahani
- 3 Department of Microbiology, Faculty of Medicine, Student Research Committee, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Banafsheh Douzandeh Mobarrez
- 1 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| | - Afsaneh Karmostaji
- 1 Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences , Bandar Abbas, Iran
| |
Collapse
|
15
|
Ben Tanfous F, Alonso CA, Achour W, Ruiz-Ripa L, Torres C, Ben Hassen A. First Description of KPC-2-ProducingEscherichia coliand ST15 OXA-48-PositiveKlebsiella pneumoniaein Tunisia. Microb Drug Resist 2017; 23:365-375. [DOI: 10.1089/mdr.2016.0090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Farah Ben Tanfous
- Université de Carthage, Faculté des Sciences de Bizerte, 7021, Tunis, Tunisie
- Service des Laboratoires, Centre National de Greffe de Moelle Osseuse, Tunis, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, UR 12ES02, Tunis, Tunisie
| | - Carla Andrea Alonso
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Wafa Achour
- Service des Laboratoires, Centre National de Greffe de Moelle Osseuse, Tunis, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, UR 12ES02, Tunis, Tunisie
| | - Laura Ruiz-Ripa
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Assia Ben Hassen
- Service des Laboratoires, Centre National de Greffe de Moelle Osseuse, Tunis, Tunisie
- Faculté de Médecine de Tunis, Université de Tunis El Manar, UR 12ES02, Tunis, Tunisie
| |
Collapse
|
16
|
Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front Microbiol 2016; 7:895. [PMID: 27379038 PMCID: PMC4904035 DOI: 10.3389/fmicb.2016.00895] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 01/08/2023] Open
Abstract
The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Young Bae Kim
- Division of STEM, North Shore Community College, Danvers MA, USA
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
17
|
Yarlagadda V, Manjunath GB, Sarkar P, Akkapeddi P, Paramanandham K, Shome BR, Ravikumar R, Haldar J. Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria. ACS Infect Dis 2016; 2:132-9. [PMID: 27624964 DOI: 10.1021/acsinfecdis.5b00114] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry
Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Goutham B. Manjunath
- Chemical Biology and Medicinal Chemistry
Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Chemical Biology and Medicinal Chemistry
Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Padma Akkapeddi
- Chemical Biology and Medicinal Chemistry
Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Yelahanka, Bengaluru 560064, Karnataka, India
| | - Bibek R. Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Yelahanka, Bengaluru 560064, Karnataka, India
| | - Raju Ravikumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bengaluru 560029, Karnataka, India
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry
Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
18
|
Ghosh C, Manjunath GB, Konai MM, Uppu DSSM, Paramanandham K, Shome BR, Ravikumar R, Haldar J. Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection. ACS Infect Dis 2016; 2:111-22. [PMID: 27624962 DOI: 10.1021/acsinfecdis.5b00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Goutham B. Manjunath
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Mohini M. Konai
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Divakara S. S. M. Uppu
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Bibek R. Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Raju Ravikumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru 560029, Karnataka, India
| | - Jayanta Haldar
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
19
|
Olaitan AO, Morand S, Rolain JM. Emergence of colistin-resistant bacteria in humans without colistin usage: a new worry and cause for vigilance. Int J Antimicrob Agents 2015; 47:1-3. [PMID: 26712133 DOI: 10.1016/j.ijantimicag.2015.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022]
Abstract
Colistin is currently regarded as one of the 'last-resort' antibiotics used for the treatment of critical infections caused by multidrug-resistant Gram-negative pathogens. There have been numerous reports of the emergence of colistin resistance in patients, most of whom had previously received colistin therapy or with acquisition via nosocomial transmission. However, there are also ample reports of colistin resistance in humans who have not received the drug previously or without nosocomial transmission. We have also observed a similar occurrence in our study involving colistin resistance from several countries along with a similar phenomenon being reported by researchers. The observation of colistin resistance in humans without prior colistin exposure is of particularly great clinical importance and concern because of the current importance of colistin in clinical medicine. Colistin use and colistin-resistant bacteria in animals have been recently reported, suggesting that animals could also be a source of transmission of colistin-resistant bacteria to humans. This is a real worry and calls for clinicians to be aware and vigilant of this phenomenon and of the possibility of independent resistance to colistin in some patients.
Collapse
Affiliation(s)
| | - Serge Morand
- Institut des Sciences de l'Évolution, CNRS-IRD-UM2, CC065, Université Montpellier 2, 34095 Montpellier Cedex 05, France; CNRS-CIRAD, Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, Lao Democratic People's Republic
| | - Jean-Marc Rolain
- Aix-Marseille Université, URMITE, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| |
Collapse
|
20
|
Huang JMY, Henihan G, Macdonald D, Michalowski A, Templeton K, Gibb AP, Schulze H, Bachmann TT. Rapid Electrochemical Detection of New Delhi Metallo-beta-lactamase Genes To Enable Point-of-Care Testing of Carbapenem-Resistant Enterobacteriaceae. Anal Chem 2015; 87:7738-45. [PMID: 26121008 DOI: 10.1021/acs.analchem.5b01270] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alarming rate at which antibiotic resistance is occurring in human pathogens causes a pressing need for improved diagnostic technologies aimed at rapid detection and point-of-care testing to support quick decision making regarding antibiotic therapy and patient management. Here, we report the successful development of an electrochemical biosensor to detect bla(NDM), the gene encoding the emerging New Delhi metallo-beta-lactamase, using label-free electrochemical impedance spectroscopy (EIS). The presence of this gene is of critical concern because organisms harboring bla(NDM) tend to be multiresistant, leaving very few treatment options. For the EIS assay, we used a bla(NDM)-specific PNA probe that was designed by applying a new approach that combines in silico probe design and fluorescence-based DNA microarray validation with electrochemical testing on gold screen-printed electrodes. The assay was successfully demonstrated for synthetic targets (LOD = 10 nM), PCR products (LOD = 100 pM), and direct, amplification-free detection from a bla(NDM)-harboring plasmid. The biosensor's specificity, preanalytical requirements, and performance under ambient conditions were demonstrated and successfully proved its suitability for further point-of-care test development.
Collapse
Affiliation(s)
- Jimmy Ming-Yuan Huang
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K.,§Emergency Department, Mackay Memorial Hospital, Taipei 10449, Taiwan
| | - Grace Henihan
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Daniel Macdonald
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Annette Michalowski
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Kate Templeton
- ‡Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, U.K
| | - Alan P Gibb
- ‡Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, U.K
| | - Holger Schulze
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| | - Till T Bachmann
- †Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, U.K
| |
Collapse
|
21
|
Abdul Rahim N, Cheah SE, Johnson MD, Yu H, Sidjabat HE, Boyce J, Butler MS, Cooper MA, Fu J, Paterson DL, Nation RL, Bergen PJ, Velkov T, Li J. Synergistic killing of NDM-producing MDR Klebsiella pneumoniae by two 'old' antibiotics-polymyxin B and chloramphenicol. J Antimicrob Chemother 2015; 70:2589-97. [PMID: 26023209 DOI: 10.1093/jac/dkv135] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/23/2015] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Combination therapy is an important option in the fight against Gram-negative 'superbugs'. This study systematically investigated bacterial killing and the emergence of polymyxin resistance with polymyxin B and chloramphenicol combinations used against New Delhi metallo-β-lactamase (NDM)-producing MDR Klebsiella pneumoniae. METHODS Four NDM-producing K. pneumoniae strains were employed. The presence of genes conferring resistance to chloramphenicol was examined by PCR. Time-kill studies (inocula ∼10(6) cfu/mL) were conducted using various clinically achievable concentrations of each antibiotic (range: polymyxin B, 0.5-2 mg/L; chloramphenicol, 4-32 mg/L), with real-time population analysis profiles documented at baseline and 24 h. The microbiological response was examined using the log change method and pharmacodynamic modelling in conjunction with scanning electron microscopy (SEM). RESULTS Multiple genes coding for efflux pumps involved in chloramphenicol resistance were present in all strains. Polymyxin B monotherapy at all concentrations produced rapid bacterial killing followed by rapid regrowth with the emergence of polymyxin resistance; chloramphenicol monotherapy was largely ineffective. Combination therapy significantly delayed regrowth, with synergy observed in 25 out of 28 cases at both 6 and 24 h; at 24 h, no viable bacterial cells were detected in 15 out of 28 cases with various combinations across all strains. No polymyxin-resistant bacteria were detected with combination therapy. These results were supported by pharmacodynamic modelling. SEM revealed significant morphological changes following treatment with polymyxin B both alone and in combination. CONCLUSIONS The combination of polymyxin B and chloramphenicol used against NDM-producing MDR K. pneumoniae substantially enhanced bacterial killing and suppressed the emergence of polymyxin resistance.
Collapse
Affiliation(s)
- Nusaibah Abdul Rahim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Johnson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Heidi Yu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hanna E Sidjabat
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - John Boyce
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash University, Clayton, Victoria, Australia
| | - David L Paterson
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia Pathology Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, Queensland, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Melbourne, Victoria, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Uppu DSSM, Manjunath GB, Yarlagadda V, Kaviyil JE, Ravikumar R, Paramanandham K, Shome BR, Haldar J. Membrane-active macromolecules resensitize NDM-1 gram-negative clinical isolates to tetracycline antibiotics. PLoS One 2015; 10:e0119422. [PMID: 25789871 PMCID: PMC4366164 DOI: 10.1371/journal.pone.0119422] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-negative 'superbugs' such as New Delhi metallo-beta-lactamase-1 (blaNDM-1) producing pathogens have become world's major public health threats. Development of molecular strategies that can rehabilitate the 'old antibiotics' and halt the antibiotic resistance is a promising approach to target them. We report membrane-active macromolecules (MAMs) that restore the antibacterial efficacy (enhancement by >80-1250 fold) of tetracycline antibiotics towards blaNDM-1 Klebsiella pneumonia and blaNDM-1 Escherichia coli clinical isolates. Organismic studies showed that bacteria had an increased and faster uptake of tetracycline in the presence of MAMs which is attributed to the mechanism of re-sensitization. Moreover, bacteria did not develop resistance to MAMs and MAMs stalled the development of bacterial resistance to tetracycline. MAMs displayed membrane-active properties such as dissipation of membrane potential and membrane-permeabilization that enabled higher uptake of tetracycline in bacteria. In-vivo toxicity studies displayed good safety profiles and preliminary in-vivo antibacterial efficacy studies showed that mice treated with MAMs in combination with antibiotics had significantly decreased bacterial burden compared to the untreated mice. This report of re-instating the efficacy of the antibiotics towards blaNDM-1 pathogens using membrane-active molecules advocates their potential for synergistic co-delivery of antibiotics to combat Gram-negative superbugs.
Collapse
Affiliation(s)
- Divakara S. S. M. Uppu
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Goutham B. Manjunath
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Venkateswarlu Yarlagadda
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Jyothi E. Kaviyil
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore, 560029, India
| | - Raju Ravikumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bangalore, 560029, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, Karnataka, India
| | - Bibek R. Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru, 560024, Karnataka, India
| | - Jayanta Haldar
- Chemical Biology & Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
23
|
Wang X, Lu M, Shi Y, Ou Y, Cheng X. Discovery of novel new Delhi metallo-β-lactamases-1 inhibitors by multistep virtual screening. PLoS One 2015; 10:e0118290. [PMID: 25734558 PMCID: PMC4348537 DOI: 10.1371/journal.pone.0118290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/12/2015] [Indexed: 01/21/2023] Open
Abstract
The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold.
Collapse
Affiliation(s)
- Xuequan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Meiling Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yang Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yu Ou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, United States of America
| |
Collapse
|
24
|
Chung The H, Karkey A, Pham Thanh D, Boinett CJ, Cain AK, Ellington M, Baker KS, Dongol S, Thompson C, Harris SR, Jombart T, Le Thi Phuong T, Tran Do Hoang N, Ha Thanh T, Shretha S, Joshi S, Basnyat B, Thwaites G, Thomson NR, Rabaa MA, Baker S. A high-resolution genomic analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae. EMBO Mol Med 2015; 7:227-39. [PMID: 25712531 PMCID: PMC4364942 DOI: 10.15252/emmm.201404767] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant (MDR) Klebsiella pneumoniae has become a leading cause of nosocomial infections worldwide. Despite its prominence, little is known about the genetic diversity of K. pneumoniae in resource-poor hospital settings. Through whole-genome sequencing (WGS), we reconstructed an outbreak of MDR K. pneumoniae occurring on high-dependency wards in a hospital in Kathmandu during 2012 with a case-fatality rate of 75%. The WGS analysis permitted the identification of two MDR K. pneumoniae lineages causing distinct outbreaks within the complex endemic K. pneumoniae. Using phylogenetic reconstruction and lineage-specific PCR, our data predicted a scenario in which K. pneumoniae, circulating for 6 months before the outbreak, underwent a series of ward-specific clonal expansions after the acquisition of genes facilitating virulence and MDR. We suggest that the early detection of a specific NDM-1 containing lineage in 2011 would have alerted the high-dependency ward staff to intervene. We argue that some form of real-time genetic characterisation, alongside clade-specific PCR during an outbreak, should be factored into future healthcare infection control practices in both high- and low-income settings.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Abhilasha Karkey
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Amy K Cain
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK
| | - Matthew Ellington
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK Addenbrooke's Hospital, Cambridge, UK
| | - Kate S Baker
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK
| | - Sabina Dongol
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Corinne Thompson
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Simon R Harris
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK
| | - Thibaut Jombart
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | - Tu Le Thi Phuong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nhu Tran Do Hoang
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Shrijana Shretha
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Suchita Joshi
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Buddha Basnyat
- Patan Academy of Health Sciences, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Guy Thwaites
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Hinxton Cambridge, UK The London School of Hygiene and Tropical Medicine, London, UK
| | - Maia A Rabaa
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK The London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
25
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) were almost nonexistent up to the 1990s, but are today encountered routinely in hospitals and other healthcare facilities in many countries including the United States. KPC-producing Klebsiella pneumoniae was the first to emerge and spread globally and is endemic in the United States, Israel, Greece, and Italy. Recently, NDM-producing Enterobacteriaceae and OXA-48-producing K. pneumoniae appear to be disseminating from South Asia and Northern Africa, respectively. They are almost always resistant to all β-lactams including carbapenems and many other classes. Mortality from invasive CPE infections reaches up to 40%. To obtain the maximal benefit from the limited options available, dosing of antimicrobial agents should be optimized based on pharmacokinetic data, especially for colistin and carbapenems. In addition, multiple observational studies have associated combination antimicrobial therapy with lower mortality compared with monotherapy for these infections. The outcomes appear to be especially favorable when patients are treated with a carbapenem and a second agent such as colistin, tigecycline, and gentamicin, but the best approach is yet to be defined.
Collapse
Affiliation(s)
- Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David L Paterson
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
26
|
Temkin E, Adler A, Lerner A, Carmeli Y. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 2014; 1323:22-42. [PMID: 25195939 DOI: 10.1111/nyas.12537] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduced in the 1980s, carbapenem antibiotics have served as the last line of defense against multidrug-resistant Gram-negative organisms. Over the last decade, carbapenem-resistant Enterobacteriaceae (CRE) have emerged as a significant public health threat. This review summarizes the molecular genetics, natural history, and epidemiology of CRE and discusses approaches to prevention and treatment.
Collapse
Affiliation(s)
- Elizabeth Temkin
- Division of Epidemiology and Preventive Medicine, Tel Aviv Sourasky Medical Center, Israel
| | | | | | | |
Collapse
|
27
|
Phenotypic and molecular characteristics of carbapenem-resistant Enterobacteriaceae in a health care system in Los Angeles, California, from 2011 to 2013. J Clin Microbiol 2014; 52:4003-9. [PMID: 25210072 DOI: 10.1128/jcm.01397-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are a concern for health care in the United States but remain relatively uncommon in California. We describe the phenotype, clonality, and carbapenemase-encoding genes present in CRE isolated from patients at a Californian tertiary health care system. CRE for this study were identified by evaluating the antibiograms of Enterobacteriaceae isolated in the UCLA Health System from 2011 to 2013 for isolates that were not susceptible to meropenem and/or imipenem. The identification of these isolates was subsequently confirmed by matrix-associated laser desorption ionization-time of flight, and broth microdilution tests were repeated to confirm the CRE phenotype. Real-time PCR for bla(KPC), bla(SME), bla(IMP), bla(NDM-1), bla(VIM), and bla(OXA-48) was performed. Clonality was assessed by repetitive sequence-based PCR (repPCR) and multilocus sequence typing (MLST). Of 15,839 nonduplicate clinical Enterobacteriaceae isolates, 115 (0.73%) met the study definition for CRE. This number increased from 0.5% (44/8165) in the first half of the study to 0.9% (71/7674) in the second (P = 0.004). The most common CRE species were Klebsiella pneumoniae, Enterobacter aerogenes, and Escherichia coli. A carbapenemase-encoding gene was found in 81.7% (94/115) of CRE and included bla(KPC) (78.3%), bla(NDM-1) (0.9%), and bla(SME) (2.6%). The majority of bla(KPC) genes were in K. pneumoniae isolates, which fell into 14 clonal groups on typing. bla(KPC) was identified in more than one species of CRE cultured from the same patient in four cases. Three bla(SME)-carrying Serratia marcescens isolates and one bla(NDM-1) carrying Providencia rettgeri isolate were detected. CRE are increasing in California, and carbapenemases, particularly KPC, are a common mechanism for carbapenem resistance in this region.
Collapse
|
28
|
Haque A, Yoshizumi A, Saga T, Ishii Y, Tateda K. ESBL-producing Enterobacteriaceae in environmental water in Dhaka, Bangladesh. J Infect Chemother 2014; 20:735-7. [PMID: 25103169 DOI: 10.1016/j.jiac.2014.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/08/2014] [Accepted: 07/08/2014] [Indexed: 12/14/2022]
Abstract
Pathogens encoding extended-spectrum β-lactamase (ESBL) genes represent a threat for failure of empirical antibiotic therapy and are associated with high mortality, morbidity and expenses. We examined surface water in Dhaka, capital of Bangladesh and isolated ESBL-producing Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae, suggesting the potential role of water for the dissemination and transmission of resistant genes among microorganisms. E. coli found most prevalent among isolated Enterobacteriaceae from environmental water. Molecular and genetic analysis revealed CTX-M-type and SHV-type ESBL genes in isolates that may influence the spread of multidrug resistant pathogenic bacteria causing human and animal infections in Bangladesh.
Collapse
Affiliation(s)
- Anwarul Haque
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Ayumi Yoshizumi
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Tomoo Saga
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan.
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
29
|
Gharout-Sait A, Alsharapy SA, Brasme L, Touati A, Kermas R, Bakour S, Guillard T, de Champs C. Enterobacteriaceae isolates carrying the New Delhi metallo-β-lactamase gene in Yemen. J Med Microbiol 2014; 63:1316-1323. [PMID: 25009193 DOI: 10.1099/jmm.0.073767-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ten carbapenem-resistant Enterobacteriaceae (eight Klebsiella pneumoniae isolates and two Enterobacter cloacae) isolates from Yemen were investigated using in vitro antimicrobial susceptibility testing, phenotypic carbapenemase detection, multilocus sequence typing (MLST) and replicon typing. Carbapenemase, extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance determinant genes were identified using PCR and sequencing. All of the 10 carbapenem-resistant Enterobacteriaceae were resistant to β-lactams, tobramycin, ciprofloxacin and cotrimoxazole. Imipenem, doripenem and meropenem MICs ranged from 2 to >32 mg l(-1) and ertapenem MICs ranged from 6 to >32 mg l(-1). All of the K. pneumoniae isolates showed ESBL activity in phenotypic tests. Genes encoding blaNDM were detected in all strains. All K. pneumoniae strains produced CTX-M-15 ESBL and SHV β-lactamases. TEM-1 β-lactamase was detected in seven isolates. Nine isolates were qnr positive including QnrB1, QnrA1 and QnrS1, and six isolates produced AAC-6'-Ib-cr. MLST identified five different sequence types (STs): ST1399, ST147, ST29, ST405 and ST340. Replicon typing showed the presence of IncFII1K plasmids in four transformants. To the best of our knowledge, this is the first report of NDM-1-producing Enterobacteriaceae isolates in Yemen.
Collapse
Affiliation(s)
- Alima Gharout-Sait
- Laboratoire de Microbiologie Appliquée, FSNV, Université de Bejaia 06000, Algeria
| | | | - Lucien Brasme
- Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, CHU Reims, Hôpital Robert Debré, Avenue du Général Koenig, 51092 Reims Cedex, France
| | - Abdelaziz Touati
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia 06000, Algeria
| | - Rachida Kermas
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia 06000, Algeria
| | - Sofiane Bakour
- Laboratoire d'Ecologie Microbienne, FSNV, Université de Bejaia 06000, Algeria
| | - Thomas Guillard
- EA4687 UFR Médecine SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, CHU Reims, Hôpital Robert Debré, Avenue du Général Koenig, 51092 Reims Cedex, France
| | - Christophe de Champs
- EA4687 UFR Médecine SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,Laboratoire de Bactériologie-Virologie-Hygiène Hospitalière, CHU Reims, Hôpital Robert Debré, Avenue du Général Koenig, 51092 Reims Cedex, France
| |
Collapse
|
30
|
Berrazeg M, Diene SM, Medjahed L, Parola P, Drissi M, Raoult D, Rolain JM. New Delhi Metallo-beta-lactamase around the world: An eReview using Google Maps. Euro Surveill 2014; 19. [DOI: 10.2807/1560-7917.es2014.19.20.20809] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative carbapenem-resistant bacteria, in particular those producing New Delhi Metallo-beta-lactamase-1 (NDM-1), are a major global health problem. To inform the scientific and medical community in real time about worldwide dissemination of isolates of NDM-1-producing bacteria, we used the PubMed database to review all available publications from the first description in 2009 up to 31 December 2012, and created a regularly updated worldwide dissemination map using a web-based mapping application. We retrieved 33 reviews, and 136 case reports describing 950 isolates of NDM-1-producing bacteria. Klebsiella pneumoniae (n= 359) and Escherichia coli (n=268) were the most commonly reported bacteria producing NDM-1 enzyme. Several case reports of infections due to imported NDM-1 producing bacteria have been reported in a number of countries, including the United Kingdom, Italy, and Oman. In most cases (132/153, 86.3%), patients had connections with the Indian subcontinent or Balkan countries. Those infected were originally from these areas, had either spent time and/or been hospitalised there, or were potentially linked to other patients who had been hospitalised in these regions. By using Google Maps, we were able to trace spread of NDM-1-producing bacteria. We strongly encourage epidemiologists to use these types of interactive tools for surveillance purposes and use the information to prevent the spread and outbreaks of such bacteria.
Collapse
Affiliation(s)
- M Berrazeg
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine et de Pharmacie, Marseille, France
- Laboratoire Antibiotiques, Antifongiques: physico- chimie, Synthèse et Activité Biologiques, Faculté des Sciences de la Nature, de la Vie, de la Terre et de l’Univers, Université Abou Bekr Belkaid, Tlemcen, Algeria
| | - S M Diene
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine et de Pharmacie, Marseille, France
| | - L Medjahed
- Département d'Informatique, Faculté de technologie, Université Abou Bekr Belkaid, Tlemcen, Algeria
| | - P Parola
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine et de Pharmacie, Marseille, France
| | - M Drissi
- Laboratoire Antibiotiques, Antifongiques: physico- chimie, Synthèse et Activité Biologiques, Faculté des Sciences de la Nature, de la Vie, de la Terre et de l’Univers, Université Abou Bekr Belkaid, Tlemcen, Algeria
| | - D Raoult
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine et de Pharmacie, Marseille, France
| | - J M Rolain
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine et de Pharmacie, Marseille, France
| |
Collapse
|
31
|
Nordmann P, Dortet L, Poirel L. Infections Due to NDM-1 Producers. Emerg Infect Dis 2014. [DOI: 10.1016/b978-0-12-416975-3.00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Wailan AM, Paterson DL. The spread and acquisition of NDM-1: a multifactorial problem. Expert Rev Anti Infect Ther 2013; 12:91-115. [DOI: 10.1586/14787210.2014.856756] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Treatment of complicated urinary tract infections with an emphasis on drug-resistant gram-negative uropathogens. Curr Infect Dis Rep 2013; 15:109-15. [PMID: 23378123 DOI: 10.1007/s11908-013-0315-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complicated urinary tract infection is a challenging infection, since cure is difficult and either persistence or recurrence is common. The challenge is frequently increased because complicated urinary tract infection is often caused by gram-negative bacilli resistant to multiple antimicrobial drugs. In this review, we approach the therapy of complicated urinary tract infection with an emphasis on those caused by antimicrobial drug-resistant gram-negative uropathogens.
Collapse
|
34
|
Patel G, Bonomo RA. "Stormy waters ahead": global emergence of carbapenemases. Front Microbiol 2013; 4:48. [PMID: 23504089 PMCID: PMC3596785 DOI: 10.3389/fmicb.2013.00048] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/20/2013] [Indexed: 01/08/2023] Open
Abstract
Carbapenems, once considered the last line of defense against of serious infections with Enterobacteriaceae, are threatened with extinction. The increasing isolation of carbapenem-resistant Gram-negative pathogens is forcing practitioners to rely on uncertain alternatives. As little as 5 years ago, reports of carbapenem resistance in Enterobacteriaceae, common causes of both community and healthcare-associated infections, were sporadic and primarily limited to case reports, tertiary care centers, intensive care units, and outbreak settings. Carbapenem resistance mediated by β-lactamases, or carbapenemases, has become widespread and with the paucity of reliable antimicrobials available or in development, international focus has shifted to early detection and infection control. However, as reports of Klebsiella pneumoniae carbapenemases, New Delhi metallo-β-lactamase-1, and more recently OXA-48 (oxacillinase-48) become more common and with the conveniences of travel, the assumption that infections with highly resistant Gram-negative pathogens are limited to the infirmed and the heavily antibiotic and healthcare exposed are quickly being dispelled. Herein, we provide a status report describing the increasing challenges clinicians are facing and forecast the “stormy waters” ahead.
Collapse
Affiliation(s)
- Gopi Patel
- Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
35
|
Emergence of blaNDM-1 among Klebsiella pneumoniae ST15 and novel ST1031 clinical isolates in China. Diagn Microbiol Infect Dis 2013; 75:373-6. [PMID: 23453788 DOI: 10.1016/j.diagmicrobio.2013.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 01/29/2023]
Abstract
The emergence of NDM-1 has become established as a major public health threat and represents a new and major challenge in the treatment of infectious diseases. A total of 39 carbapenem-resistant Enterobacteriaceae isolates collected from patients receiving care at 5 teaching hospitals in Jiangxi province, central China, were analyzed for carriage of resistance genes, including bla(NDM-1). Two carbapenem-resistant Klebsiella pneumoniae isolates (NC12 and NC18) were found to harbor bla(NDM-1). In addition to bla(NDM-1), NC12 also carried bla(SHV-1), while NC18 harbored additional resistance genes, including bla(SHV-12), bla(CTX-M-14), armA and bla(TEM-1). NC12 and NC18 belonged to ST15 and novel ST1031 and were clonally unrelated. Carbapenem resistance for NC12 could be transferred to Escherichia coli recipients through conjugation and chemical transformation, while carbapenem resistance for NC18 was only transferred to E. coli recipients by chemical transformation. The EcoR1-digested DNA pattern of plasmids from the transformants of NC12 was identical to that for NC18. Taken together, this is the first report of bla(NDM-1) carriage by K. pneumoniae clinical isolates in mainland China, indicating that bla(NDM-1) is disseminated among Enterobacteriaceae in China. Systemic surveillance should focus on the dissemination of bla(NDM-1) among Gram-negative clinical isolates, especially some major clones, such as K. pneumoniae ST15 which is a major clone among CTX-M-15-producing isolates.
Collapse
|
36
|
Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 2013; 62:499-513. [PMID: 23329317 DOI: 10.1099/jmm.0.052555-0] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rapidity with which new types of antibiotic resistance can disseminate globally following their initial emergence or recognition is exemplified by the novel carbapenemase New Delhi metallo-β-lactamase (NDM). The first documented case of infection caused by bacteria producing NDM occurred in 2008, although retrospective analyses of stored cultures have identified the gene encoding this enzyme (blaNDM) in Enterobacteriaceae isolated in 2006. Since its first description, NDM carbapenemase has been reported from 40 countries worldwide, encompassing all continents except South America and Antarctica. The spread of NDM has a complex epidemiology involving the spread of a variety of species of NDM-positive bacteria and the inter-strain, inter-species and inter-genus transmission of diverse plasmids containing blaNDM, with the latter mechanism having played a more prominent role to date. The spread of NDM illustrates that antibiotic resistance is a public health problem that transcends national borders and will require international cooperation between health authorities if it is to be controlled.
Collapse
Affiliation(s)
- Alan P Johnson
- Department of Healthcare Associated Infection & Antimicrobial Resistance, HPA Health Protection Services Colindale, NW9 5EQ, London, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, HPA Microbiology Services Colindale, NW9 5EQ, London, UK
| |
Collapse
|
37
|
Barantsevich EP, Churkina IV, Barantsevich NE, Pelkonen J, Schlyakhto EV, Woodford N. Emergence of Klebsiella pneumoniae producing NDM-1 carbapenemase in Saint Petersburg, Russia. J Antimicrob Chemother 2013; 68:1204-6. [PMID: 23315490 DOI: 10.1093/jac/dks503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Sidjabat HE, Kamolvit W, Wailan A, Paterson DL. Multi-drug-resistant Gram-negative bacteria. MICROBIOLOGY AUSTRALIA 2013. [DOI: 10.1071/ma13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Abstract
PURPOSE OF REVIEW This review focuses on recent changes in epidemiological aspects of bacteria-induced intra-abdominal infections (IAIs), including the dominant pathogens, antimicrobial susceptibility profiles, and emerging resistance phenotypes. RECENT FINDINGS Enterobacteriaceae species, including Escherichia coli and Klebsiella pneumoniae, remain the major pathogens contributing to abdominal sepsis, although Pseudomonas aeruginosa and Acinetobacter baumannii have recently become common causes of hospital-acquired IAIs. The prevalence of multidrug-resistant Gram-negative bacilli, especially those that produce extended-spectrum β-lactamases (ESBLs), has increased worldwide, although the distribution of those organisms varies from region to region. Furthermore, recent changes in interpretive breakpoints for antimicrobial susceptibility testing recommended by the Clinical Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) have resulted in a marked increase in the reported rates of resistance among Gram-negative bacilli to carbapenems, extended-spectrum cephalosporins, and fluoroquinolones. Besides, routine detection and reporting of ESBL phenotypes for clinical isolates have not been recommended after following new interpretive breakpoints. More studies are needed to investigate the impacts of these changes on therapeutic strategies and epidemiological surveillance. In addition, pathogens carrying New Delhi metallo-β-lactamases (NDMs), K. pneumoniae carbapenemases (KPCs), and other carbapenemases show extended resistance to currently available antibiotics and rapid transfer between species and countries. Although some of these pathogens are still susceptible to tigecycline and colistin, rates of resistance to these two agents are rising. SUMMARY Abdominal sepsis due to multidrug-resistant bacteria, especially ESBL producers, and international and interspecies spreading of metallo-β-lactamase raise key therapeutic problems.
Collapse
|
40
|
Emergence of OXA-48 and OXA-181 carbapenemases among Enterobacteriaceae in South Africa and evidence of in vivo selection of colistin resistance as a consequence of selective decontamination of the gastrointestinal tract. J Clin Microbiol 2012; 51:369-72. [PMID: 23152549 DOI: 10.1128/jcm.02234-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study reports on the emergence of OXA-48-like carbapenemases among isolates of Enterobacteriaceae in South Africa. In addition, the emergence during therapy of a colistin-resistant OXA-181-producing Klebsiella pneumoniae isolate was documented following selective digestive tract decontamination with oral colistin, which is therefore strongly discouraged.
Collapse
|