1
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
2
|
Massol J, Dinh A, Jeannot K, Duran C, Bouchand F, Potron A, Dortet L, Jehl F. Should we, and how to, optimize cefiderocol administration during severe nosocomial pneumonia due to carbapenem-resistant Acinetobacter baumanii? A viewpoint. J Glob Antimicrob Resist 2024; 38:140-145. [PMID: 38844258 DOI: 10.1016/j.jgar.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVES Acinetobacter baumannii is classified by the centre for Disease Control and Prevention (CDC) as an "urgent threat" due to its ability to acquire and develop resistance to multiple classes of antibiotics. As a result, it is one of the most concerning pathogens in healthcare settings, with increasing incidence of infections due to carbapenem-resistant Acinetobacter baumannii (CRAB) associated with high morbidity and mortality rates. Therefore, there are ongoing efforts to find novel treatment options, one of which is cefiderocol. We aim to review available evidence on cefiderocol use for severe nosocomial pneumonia due to carbapenem-resistant Acinetobacter baumannii. METHODS A comprehensive review was conducted from 2017 to 2023, covering articles from databases such as Pubmed, Scopus, and Embase, along with conference proceedings from ECCMID 2023. The primary focus was on severe nosocomial pneumonia due A. baumannii and cefiderocol. DISCUSSION Cefiderocol, targeting periplasmic space Penicillin-Binding Proteins (PBPs) via siderophore transport pathways, exhibits promise against multi-drug resistant Gram-negative bacilli. Its effectiveness in treating CRAB pneumonia remains debated. The CREDIBLE trial reported higher mortality with cefiderocol compared to the best available treatment, while other cohort studies showed contrasting outcomes. Patient variations and pharmacokinetic factors may underlie these discrepancies. The recommended cefiderocol dosage regimen may fall short of desired pharmacokinetic targets, especially in critically ill patients and lung infections. Pulmonary factors hindering cefiderocol's entry into bacteria through iron transporters are overlooked in clinical breakpoints. Optimized dosing or combination regimens may enhance infection site exposure and outcomes. CONCLUSIONS Further research is needed to determine the optimal cefiderocol dosage and administration (mono vs. dual therapy, continuous vs. intermittent infusion), in severe Acinetobacter baumannii nosocomial pneumonia.
Collapse
Affiliation(s)
- Julien Massol
- Infectious disease department, Raymond-Poincaré University Hospital, Garches, France.
| | - Aurélien Dinh
- Infectious disease department, Raymond-Poincaré University Hospital, Garches, France
| | - Katy Jeannot
- Bacteriology department, University Hospital of Besançon, Besançon, France
| | - Clara Duran
- Infectious disease department, Raymond-Poincaré University Hospital, Garches, France
| | | | - Anaïs Potron
- Bacteriology department, University Hospital of Besançon, Besançon, France
| | - Laurent Dortet
- Microbiology department, University Hospital of Bicêtre, Kremlin Bicêtre, France
| | - François Jehl
- Microbiology department, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
3
|
Uskudar-Guclu A, Danyildiz S, Mirza HC, Akcil Ok M, Basustaoglu A. In vitro activity of cefiderocol against carbapenem-resistant Acinetobacter baumannii carrying various β-lactamase encoding genes. Eur J Clin Microbiol Infect Dis 2024; 43:1171-1179. [PMID: 38652417 PMCID: PMC11178621 DOI: 10.1007/s10096-024-04831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES This study aimed to determine the in vitro efficacy of cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates and evaluate the disk-diffusion (DD) method as an alternative method to broth-microdilution (BMD). METHODS Totally 89 CRAB isolates were included. Cluster analysis was determined by Pulsed-Field Gel Electrophoresis (PFGE). Resistance genes; blaOXA-51, blaOXA-23, blaOXA-24, blaOXA-58,blaPER-1, blaNDM, blaIMP and mcr-1 were screened. Cefiderocol susceptibility testing was performed by both DD and BMD. Interpretation was made according to EUCAST and CLSI. Categorical agreement (CA), minor errors (mEs), major errors (MEs), and very major errors (VMEs) were determined. RESULTS PFGE revealed 5 distinct pulsotypes; 86 of the isolates were extensively drug-resistant (XDR). All the isolates were negative for blaNDM, blaIMP, mcr-1, while positive for blaOXA-58 and blaOXA51. blaPER-1 was positive for 33.7%; blaOXA-23 for 74.2%; blaOXA-24 for 12.3%. According to CLSI, the MEs rate was 1.85%, mEs was 7.86% and there were no VMEs. According to EUCAST, MEs rate was 3.70%, there were no mEs and VMEs. CA was 91% for CLSI and 97.8% for EUCAST. MICs of cefiderocol against A. baumannii isolates ranged from 0.06 to > 128 mg/L, with MIC50 and MIC90 values of 0.5 and > 128 mg/L, respectively. CONCLUSIONS Cefiderocol susceptibility was 60.7% in CRAB isolates. MIC50, MIC90 of blaPER-1 positive and blaPER-1 negative groups were > 128/>128 and 0.25/>128 mg/L. A correlation between the presence of blaPER-1 and cefiderocol resistance was observed (p < 0.0001). Among colistin-resistant isolates, the presence of blaPER-1 was 47.1% and 75% of them were resistant to cefiderocol respectively.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye.
| | - Salih Danyildiz
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye
| | - Hasan Cenk Mirza
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye
| | - Mehtap Akcil Ok
- Department of Nutrition and Dietetics, Baskent University Faculty of Health Sciences, Ankara, Türkiye
| | - Ahmet Basustaoglu
- Department of Medical Microbiology, Baskent University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
4
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Patauner F, Durante-Mangoni E. Cefiderocol for resistant Gram negatives: linking in vitro activity with clinical effectiveness. Clin Microbiol Infect 2024; 30:155-158. [PMID: 38036218 DOI: 10.1016/j.cmi.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Fabian Patauner
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Ospedale Monaldi, Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Ospedale Monaldi, Naples, Italy.
| |
Collapse
|
6
|
Chen Y, Xu L, Wang J. Characteristics of a Carbapenem-Resistant Acinetobacter baumannii Strain Causing Community-Acquired Pneumonia in a Young Healthy Women. Infect Drug Resist 2023; 16:7819-7826. [PMID: 38152553 PMCID: PMC10752029 DOI: 10.2147/idr.s439614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii rarely causes community-acquired pneumonia. Here, we report the clinical and genomic characteristics of a multidrug-resistant A. baumannii strain responsible for community-acquired pneumonia in a 31-year-old healthy young women. Methods A. baumannii strain W2LL was recovered from the alveolar lavage fluid sample of a hospitalized patient with pulmonary infection. Growth rate studies were conducted under various conditions, and virulence assessments were performed using Galleria Mellonella larvae. Whole Genome Sequencing (WGS) was carried out using Oxford Nanopore MinIon and Illumina HiSeq. In silico multilocus sequence typing (MLST), plasmid replicons, antimicrobial resistance genes, and virulence genes were determined using the BacWGSTdb webserver. Phylogenetic analysis between strain W2LL and other closely related A. baumannii genomes retrieved from NCBI database was performed. Results WGS identified strain W2LL as a rare sporadic lineage sequence type (ST) 1431. In addition to the detection of the β-lactamase gene (blaOXA-98) on the chromosome, blaOXA-58 was found on a 92,034 bp plasmid. Antimicrobial susceptibility testing revealed this strain was resistant to cephalosporins and carbapenems, with initial treatment using cefoxitin proving ineffective. Subsequent treatment with piperacillin-sulbactam combined with levofloxacin led to gradual improvement. Compared to A. baumannii ATCC 17978, W2LL exhibited similar growth rates at 37°C and 42°C, as well as in the presence of zinc. However, strain W2LL exhibited higher virulence phenotype compared to ATCC 17978 in G. mellonella model. The closest relative of A. baumannii W2LL was CAM180_1, another isolate recovered from Cambodia, which differed by 191 SNPs. Conclusion W2LL is a rare ST1431 carbapenem-resistant A. baumannii strain recovered from a patient with no prior hospitalization or typical risk factors. This underscores the growing menace posed by carbapenem-resistant A. baumannii, no longer limited to hospitalized patients, potentially impacting the broader, younger population.
Collapse
Affiliation(s)
- Yan Chen
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Liqun Xu
- Department of Emergency Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianfeng Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Institute of Respiratory Diseases of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
7
|
Karruli A, Migliaccio A, Pournaras S, Durante-Mangoni E, Zarrilli R. Cefiderocol and Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1729. [PMID: 38136764 PMCID: PMC10740486 DOI: 10.3390/antibiotics12121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) remain a clinical challenge due to limited treatment options. Recently, cefiderocol, a novel siderophore cephalosporin, and sulbactam-durlobactam, a bactericidal β-lactam-β-lactamase inhibitor combination, have been approved by the Food and Drug Administration for the treatment of A. baumannii infections. In this review, we discuss the mechanisms of action of and resistance to cefiderocol and sulbactam-durlobactam, the antimicrobial susceptibility of A. baumannii isolates to these drugs, as well as the clinical effectiveness of cefiderocol and sulbactam/durlobactam-based regimens against CRAB. Overall, cefiderocol and sulbactam-durlobactam show an excellent antimicrobial activity against CRAB. The review of clinical studies evaluating the efficacy of cefiderocol therapy against CRAB indicates it is non-inferior to colistin/other treatments for CRAB infections, with a better safety profile. Combination treatment is not associated with improved outcomes compared to monotherapy. Higher mortality rates are often associated with prior patient comorbidities and the severity of the underlying infection. Regarding sulbactam-durlobactam, current data from the pivotal clinical trial and case reports suggest this antibiotic combination could be a valuable option in critically ill patients affected by CRAB infections, in particular where no other antibiotic appears to be effective.
Collapse
Affiliation(s)
- Arta Karruli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Antonella Migliaccio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, 12462 Athens, Greece
| | | | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
8
|
Takemura M, Nakamura R, Ota M, Nakai R, Sahm DF, Hackel MA, Yamano Y. In vitro and in vivo activity of cefiderocol against Achromobacter spp. and Burkholderia cepacia complex, including carbapenem-non-susceptible isolates. Antimicrob Agents Chemother 2023; 67:e0034623. [PMID: 37971240 PMCID: PMC10720420 DOI: 10.1128/aac.00346-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
Achromobacter spp. and Burkholderia cepacia complex (Bcc) are rare but diverse opportunistic pathogens associated with serious infections, which are often multidrug resistant. This study compared the in vitro antibacterial activity of the siderophore antibiotic cefiderocol against Achromobacter spp. and Bcc isolates with that of other approved antibacterial drugs, including ceftazidime-avibactam, ciprofloxacin, colistin, imipenem-relebactam, and meropenem-vaborbactam. Isolates were collected in the SIDERO multinational surveillance program. Among 334 Achromobacter spp. isolates [76.6% from respiratory tract infections (RTIs)], cefiderocol had minimum inhibitory concentration (MIC)50/90 of 0.06/0.5 µg/mL overall and 0.5/4 µg/mL against 52 (15.6%) carbapenem-non-susceptible (Carb-NS) isolates. Eleven (3.3%) Achromobacter spp. isolates overall and 6 (11.5%) Carb-NS isolates were not susceptible to cefiderocol. Among 425 Bcc isolates (73.4% from RTIs), cefiderocol had MIC50/90 of ≤0.03/0.5 µg/mL overall and ≤0.03/1 µg/mL against 184 (43.3%) Carb-NS isolates. Twenty-two (5.2%) Bcc isolates overall and 13 (7.1%) Carb-NS isolates were not susceptible to cefiderocol. Cumulative MIC distributions showed cefiderocol to be the most active of the agents tested in vitro against both Achromobacter spp. and Bcc. In a neutropenic murine lung infection model and a humanized pharmacokinetic immunocompetent rat lung infection model, cefiderocol showed significant bactericidal activity against two meropenem-resistant Achromobacter xylosoxidans strains compared with untreated controls (P < 0.05) and vehicle-treated controls (P < 0.05), respectively. Meropenem, piperacillin-tazobactam, ceftazidime, and ciprofloxacin comparators showed no significant activity in these models. The results suggest that cefiderocol could be a possible treatment option for RTIs caused by Achromobacter spp. and Bcc.
Collapse
Affiliation(s)
- Miki Takemura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| | - Rio Nakamura
- Department of Biofunctional Evaluation ΙI, Shionogi TechnoAdvance Research & Co., Ltd., Osaka, Japan
| | - Merime Ota
- Department of Biofunctional Evaluation ΙI, Shionogi TechnoAdvance Research & Co., Ltd., Osaka, Japan
| | - Ryuichiro Nakai
- Department of Biofunctional Evaluation ΙI, Shionogi TechnoAdvance Research & Co., Ltd., Osaka, Japan
| | - Daniel F. Sahm
- International Health Management Associates, Schaumburg, Illinois, USA
| | | | - Yoshinori Yamano
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
9
|
Artuso I, Poddar H, Evans BA, Visca P. Genomics of Acinetobacter baumannii iron uptake. Microb Genom 2023; 9:mgen001080. [PMID: 37549061 PMCID: PMC10483418 DOI: 10.1099/mgen.0.001080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Iron is essential for growth in most bacteria due to its redox activity and its role in essential metabolic reactions; it is a cofactor for many bacterial enzymes. The bacterium Acinetobacter baumannii is a multidrug-resistant nosocomial pathogen. A. baumannii responds to low iron availability imposed by the host through the exploitation of multiple iron-acquisition strategies, which are likely to deliver iron to the cell under a variety of environmental conditions, including human and animal infection. To date, six different gene clusters for active iron uptake have been described in A. baumannii , encoding protein systems involved in (i) ferrous iron uptake (feo ); (ii) haem uptake (hemT and hemO ); and (iii) synthesis and transport of the baumannoferrin(s) (bfn ), acinetobactin (bas /bau ) and fimsbactin(s) (fbs ) siderophores. Here we describe the structure, distribution and phylogeny of iron-uptake gene clusters among >1000 genotypically diverse A. baumannii isolates, showing that feo , hemT , bfn and bas /bau clusters are very prevalent across the dataset, whereas the additional haem-uptake system hemO is only present in a portion of the dataset and the fbs gene cluster is very rare. Since the expression of multiple iron-uptake clusters can be linked to virulence, the presence of the additional haem-uptake system hemO may have contributed to the success of some A. baumannii clones.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Harsh Poddar
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
| | - Benjamin A. Evans
- Norwich Medical School, University of East Anglia, Rosalind Franklin Road, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via Ardeatina, 306/354, 00179 Rome, Italy
- National Biodiversity Future Centre, Palermo 90133, Italy
| |
Collapse
|