1
|
García-Masedo Fernández S, Laporta R, Aguilar M, García Fadul C, Cabrera Pineda M, Alastruey-Izquierdo A, Royuela A, Sánchez Romero I, Ussetti Gil P. Clinical Significance and Therapeutic Challenges of Scedosporium spp. and Lomentospora prolificans Isolates in a Single-Center Cohort of Lung Transplant Recipients. J Fungi (Basel) 2025; 11:291. [PMID: 40278112 PMCID: PMC12028535 DOI: 10.3390/jof11040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
(1) Background: Emerging fungal infections associated with Scedosporium spp. and Lomentospora prolificans (S/L) are becoming more frequent and are very difficult to treat. Our objective was to analyze the frequency and management of S/L isolates in lung transplant (LTx) recipients, the patient outcomes and in vitro antifungal sensitivity. (2) Methods: We included all patients with S/L isolation during post-transplant follow-up. Data were collected from electronic medical records. All samples were cultivated on Sabouraud Chloramphenicol agar. Isolations of S/L were submitted to in vitro susceptibility tests. (3) Results: A total of 11 (2%) of the 576 LTx recipients included had at least one isolation of S/L. Classification for the 11 cases were colonization (4; 36%) and infection (7; 65%). Five infections were pulmonary (71%) and two were disseminated (29%). S. apiospermum complex was the most frequently occurring isolation in patients with pulmonary disease while L. prolificans was the most frequent in patients with disseminated disease. Ten patients were treated. The most frequent antifungal drugs used were voriconazole (n = 8) and terbinafine (n = 6). Seven patients (70%) received more than one drug. The mortality rate associated with L. prolificans isolation was 50% for colonization and 100% for disseminated disease. (4) Conclusions: Scedosporium spp. and L. prolificans infections are associated with high morbidity and mortality rates. New diagnostic and therapeutic tools are required to reduce the impact of these infections.
Collapse
Affiliation(s)
| | - Rosalía Laporta
- Pneumology Department, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; (R.L.); (M.A.); (C.G.F.); (P.U.G.)
| | - Myriam Aguilar
- Pneumology Department, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; (R.L.); (M.A.); (C.G.F.); (P.U.G.)
| | - Christian García Fadul
- Pneumology Department, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; (R.L.); (M.A.); (C.G.F.); (P.U.G.)
| | - María Cabrera Pineda
- Microbiology Department, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; (M.C.P.); (I.S.R.)
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain;
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, 28222 Majadahonda, Madrid, Spain;
| | - Isabel Sánchez Romero
- Microbiology Department, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; (M.C.P.); (I.S.R.)
| | - Piedad Ussetti Gil
- Pneumology Department, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain; (R.L.); (M.A.); (C.G.F.); (P.U.G.)
| |
Collapse
|
2
|
Neoh CF, Jeong W, Kong DCM, Beardsley J, Kwok PCL, Slavin MA, Chen SCA. New and emerging roles for inhalational and direct antifungal drug delivery approaches for treatment of invasive fungal infections. Expert Rev Anti Infect Ther 2024; 22:1085-1098. [PMID: 39317940 DOI: 10.1080/14787210.2024.2409408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION The rising prevalence of difficult-to-treat, deep-seated invasive fungal diseases (IFD) has led to high mortality. Currently available antifungal treatments, administered predominantly orally or intravenously, may not sufficiently penetrate certain body sites, and/or are associated with systemic toxicity. Little is known about how to position alternative administration approaches such as inhalational and direct drug delivery routes. AREAS COVERED This review provides an updated overview of unconventional drug delivery strategies for managing IFD, focusing on inhalational (to target the lungs) and direct delivery methods to the central nervous system, bone/joint, and eyes. Novel compounds (e.g. opelconazole) and existing antifungals with innovative drug delivery systems currently undergoing clinical trials and/or used off-label in the clinical setting are discussed. EXPERT OPINION For both inhalational agents and direct delivery approaches, there are similar challenges that include the absence of: approved formulations for specific administration routes, delivery vehicles that are simple and safe to use whilst maintaining potency and efficiency of delivery, animal models suitable for investigating pharmacokinetic/pharmacodynamic profiles of inhaled antifungals, and consensus on the composite endpoints and intervals for of follow-up in clinical trials. To meet these challenges, cooperation of all stakeholders in drug development and regulation is required.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Wirawan Jeong
- Pharmacy Department, The Royal Women's Hospital, Melbourne, Australia
| | - David C M Kong
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Justin Beardsley
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Westmead Institute for Medical Research, Sydney, Australia
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Sydney, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Sydney infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| |
Collapse
|
3
|
Pata R, Kristeva J, Kosuru B. Pneumonia in Transplant Recipients: A Comprehensive Review of Diagnosis and Management. Cureus 2024; 16:e73669. [PMID: 39544950 PMCID: PMC11562015 DOI: 10.7759/cureus.73669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Transplant recipients have an increased risk of complications, including graft dysfunction and infections, which can be life-threatening if not recognized early. Pneumonia ranks as one of the most frequent complications in both solid organ and hematopoietic stem cell transplants. Clinical symptoms manifest late during infections in immunocompromised patients. An aggressive approach centered on early confirmatory diagnosis and a low threshold for empiric therapy is often the most effective strategy. The isolation of a pathogen in an upper airway sample does not necessarily mean the same organism is responsible for pneumonia. Viruses such as CMV (cytomegalovirus virus) may function as co-pathogens for opportunistic infections in transplant recipients in addition to causing their own primary infectious syndrome. Furthermore, some viruses exhibit immunomodulatory effects that can affect the graft function. Given the exhaustive list of causative pathogens responsible for pneumonia, the best approach to the diagnosis is to have a conceptual framework that includes a detailed history, such as the type of transplant, degree of immunosuppression, antimicrobial prophylaxis, risk factors, time of presentation since transplantation and the radiographic pattern on the CT chest (computer tomography of the chest). Management depends predominantly on the degree of antimicrobial resistance, drug-to-drug interaction, and adjustments to the immunosuppression.
Collapse
Affiliation(s)
- Ramakanth Pata
- Pulmonary and Critical Care Medicine, One Brooklyn Health, New York, USA
- Pulmonary and Critical Care Medicine, University of Cincinnati Medical Center, Cincinatti, USA
| | | | - Bhanu Kosuru
- Internal Medicine, University of Pittsburgh Medical Center (UPMC) East, Monroeville, USA
| |
Collapse
|
4
|
Huggins JP, Arthur D, Chow SC, Pease R, Stanly K, Workman A, Reynolds J, Alexander BD. Risk Factors for Invasive Fungal Infection in Lung Transplant Recipients on Universal Antifungal Prophylaxis. Open Forum Infect Dis 2024; 11:ofad640. [PMID: 38318603 PMCID: PMC10839422 DOI: 10.1093/ofid/ofad640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024] Open
Abstract
Background Many centers use universal antifungal prophylaxis after lung transplant, but risk factors for invasive fungal infection (IFI) in this setting are poorly described. Methods This retrospective, single-center cohort study including 603 lung transplant recipients assessed risk factors for early (within 90 days of transplant) invasive candidiasis (IC) and invasive mold infection (IMI) and late (90-365 days after transplant) IMI using Cox proportional hazard regression. Results In this cohort, 159 (26.4%) patients had 182 IFIs. Growth of yeast on donor culture (hazard ratio [HR], 3.30; 95% CI, 1.89-5.75) and prolonged length of stay (HR, 1.02; 95% CI, 1.01-1.03) were associated with early IC risk, whereas transplantation in 2016 or 2017 (HR, 0.21; 95% CI, 0.06-0.70; HR, 0.25; 95% CI, 0.08-0.80, respectively) and female recipient sex (HR, 0.53; 95% CI, 0.30-0.93) were associated with reduced risk. Antimold therapy (HR, 0.21; 95% CI, 0.06-0.78) was associated with lower early IMI risk, and female donor sex (HR, 0.40; 95% CI, 0.22-0.72) was associated with lower late IMI risk. Recent rejection was a risk factor for late IMI (HR, 1.73; 95% CI, 1.02-2.95), and renal replacement therapy predisposed to early IC, early IMI, and late IMI (HR, 5.67; 95% CI, 3.01-10.67; HR, 7.54; 95% CI, 1.93-29.45; HR, 5.33; 95% CI, 1.46-19.49, respectively). Conclusions In lung transplant recipients receiving universal antifungal prophylaxis, risk factors for early IC, early IMI, and late IMI differ.
Collapse
Affiliation(s)
- Jonathan P Huggins
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - David Arthur
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Shein-Chung Chow
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Robert Pease
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Kelly Stanly
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- School of Medicine, Duke University, Durham, North Carolina, USA
| | | | - John Reynolds
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Barbara D Alexander
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Boscolo A, Cattelan A, Marinello S, Medici F, Pettenon G, Congedi S, Sella N, Presa N, Pistollato E, Silvestrin S, Biscaro M, Muraro L, Peralta A, Mazzitelli M, Dell’Amore A, Rea F, Navalesi P. Fungal Infections and Colonization after Bilateral Lung Transplant: A Six-Year Single-Center Experience. J Fungi (Basel) 2024; 10:80. [PMID: 38276026 PMCID: PMC10817539 DOI: 10.3390/jof10010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Fungal infections (FIs) are one of the leading causes of morbidity and mortality within the first year of lung transplant (LT) in LT recipients (LTRs). Their prompt identification and treatment are crucial for a favorable LTR outcome. The objectives of our study were to assess (i) the FI incidence and colonization during the first year after a bilateral LT, (ii) the risk factors associated with FI and colonization, and (iii) the differences in fungal incidence according to the different prophylactic strategies. All bilateral LTRs admitted to the intensive care unit of Padua University Hospital were retrospectively screened, excluding patients <18 years of age, those who had been re-transplanted, and those who had received ventilation and/or extracorporeal membrane oxygenation before LT. Overall, 157 patients were included. A total of 13 (8%) patients developed FI, and 36 (23%) developed colonization, which was mostly due to Aspergillus spp. We did not identify independent risk factors for FI. Groups of patients receiving different prophylactic strategies reported a similar incidence of both FI and colonization. The incidence of FI and fungal colonization was 8% and 23%, respectively, with no differences between different antifungal prophylaxes or identified predisposing factors. Further studies with larger numbers are needed to confirm our results.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Annamaria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Serena Marinello
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Francesca Medici
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Giovanni Pettenon
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Sabrina Congedi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Nicolò Sella
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Nicolò Presa
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Elisa Pistollato
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Stefano Silvestrin
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Martina Biscaro
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Luisa Muraro
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Arianna Peralta
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Andrea Dell’Amore
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Paolo Navalesi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| |
Collapse
|
6
|
Rombauts A, Bodro M, Daniel Gumucio V, Carbonell I, Favà À, Lladó L, González-Costello J, Oppenheimer F, Castel-Lavilla MÁ, Len O, Marquez-Algaba E, Nuvials-Casals X, Martínez González D, Lacasa JS, Carratalà J, Sabé N. Antifungal prophylaxis with nebulized amphotericin-B in solid-organ transplant recipients with severe COVID-19: a retrospective observational study. Front Cell Infect Microbiol 2023; 13:1165236. [PMID: 37180450 PMCID: PMC10174318 DOI: 10.3389/fcimb.2023.1165236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) has emerged as a frequent complication in the intensive care unit (ICU). However, little is known about this life-threatening fungal superinfection in solid organ transplant recipients (SOTRs), including whether targeted anti-mold prophylaxis might be justified in this immunosuppressed population. We performed a multicentric observational retrospective study of all consecutive ICU-admitted COVID-19 SOTRs between August 1, 2020 and December 31, 2021. SOTRs receiving antifungal prophylaxis with nebulized amphotericin-B were compared with those without prophylaxis. CAPA was defined according the ECMM/ISHAM criteria. Sixty-four SOTRs were admitted to ICU for COVID-19 during the study period. One patient received antifungal prophylaxis with isavuconazole and was excluded from the analysis. Of the remaining 63 SOTRs, nineteen (30.2%) received anti-mold prophylaxis with nebulized amphotericin-B. Ten SOTRs who did not receive prophylaxis developed pulmonary mold infections (nine CAPA and one mucormycosis) compared with one who received nebulized amphotericin-B (22.7% vs 5.3%; risk ratio 0.23; 95%CI 0.032-1.68), but with no differences in survival. No severe adverse events related to nebulized amphotericin-B were recorded. SOTRs admitted to ICU with COVID-19 are at high risk for CAPA. However, nebulized amphotericin-B is safe and might reduce the incidence of CAPA in this high-risk population. A randomized clinical trial to confirm these findings is warranted.
Collapse
Affiliation(s)
- Alexander Rombauts
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- *Correspondence: Alexander Rombauts,
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Victor Daniel Gumucio
- Department of Intensive Care Medicine, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Carbonell
- Department of Infectious Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Favà
- Renal Transplant Unit, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Lladó
- Liver Transplant Unit, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - José González-Costello
- Heart Transplant Unit, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | | | | | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Marquez-Algaba
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Nuvials-Casals
- Department of Intensive Care Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Judith Sacanell Lacasa
- Department of Intensive Care Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Jordi Carratalà
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L´Hospitalet de Llobregat, Barcelona, Spain
| | - Nuría Sabé
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Hawes AM, Permpalung N. Diagnosis and Antifungal Prophylaxis for COVID-19 Associated Pulmonary Aspergillosis. Antibiotics (Basel) 2022; 11:antibiotics11121704. [PMID: 36551361 PMCID: PMC9774425 DOI: 10.3390/antibiotics11121704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 pandemic has redemonstrated the importance of the fungal-after-viral phenomenon, and the question of whether prophylaxis should be used to prevent COVID-19-associated pulmonary aspergillosis (CAPA). A distinct pathophysiology from invasive pulmonary aspergillosis (IPA), CAPA has an incidence that ranges from 5% to 30%, with significant mortality. The aim of this work was to describe the current diagnostic landscape of CAPA and review the existing literature on antifungal prophylaxis. A variety of definitions for CAPA have been described in the literature and the performance of the diagnostic tests for CAPA is limited, making diagnosis a challenge. There are only six studies that have investigated antifungal prophylaxis for CAPA. The two studied drugs have been posaconazole, either a liquid formulation via an oral gastric tube or an intravenous formulation, and inhaled amphotericin. While some studies have revealed promising results, they are limited by small sample sizes and bias inherent to retrospective studies. Additionally, as the COVID-19 pandemic changes and we see fewer intubated and critically ill patients, it will be more important to recognize these fungal-after-viral complications among non-critically ill, immunocompromised patients. Randomized controlled trials are needed to better understand the role of antifungal prophylaxis.
Collapse
Affiliation(s)
- Armani M. Hawes
- Correspondence: ; Tel.: +1-410-955-5000; Fax: +1-210-892-3847
| | | |
Collapse
|