1
|
Shapiro S. Methyls and Me. J Med Chem 2025; 68:6857-6859. [PMID: 40113333 DOI: 10.1021/acs.jmedchem.5c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Affiliation(s)
- Stuart Shapiro
- Harry Lime Institute for Penicillin Research, Basel CH-4055, Switzerland
| |
Collapse
|
2
|
Bonnin RA, Jeannot K, Henriksen AS, Quevedo J, Dortet L. 'In vitro activity of cefepime-enmetazobactam on carbapenem-resistant gram negatives'-author's response. Clin Microbiol Infect 2025:S1198-743X(25)00130-2. [PMID: 40120755 DOI: 10.1016/j.cmi.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Affiliation(s)
- Rémy A Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)", INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
| | - Katy Jeannot
- Bacteriology Unit, University hospital of Besançon, Besançon, France; Associated French National Reference Center for Antibiotic Resistance in Pseudomonas and Acinetobacter, Besançon, France
| | | | | | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)", INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France; Bacteriology-Hygiene Unit, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
| |
Collapse
|
3
|
Le Terrier C, Shapiro S, Nordmann P, Poirel L. Re: 'In vitro activity of cefepime-enmetazobactam on carbapenem-resistant gram negatives' by Bonnin et al. Clin Microbiol Infect 2025:S1198-743X(25)00072-2. [PMID: 39954949 DOI: 10.1016/j.cmi.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Affiliation(s)
- Christophe Le Terrier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Faculty of Medecine, University of Geneva, Geneva, Switzerland; Division of Intensive Care, Department of Acute Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Stuart Shapiro
- Harry Lime Institute for Penicillin Research, Basel, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland.
| |
Collapse
|
4
|
Bassetti M, Larosa B, Vena A, Giacobbe DR. Novel agents in development for the treatment of resistant Gram-negative infections. Expert Rev Anti Infect Ther 2024; 22:965-976. [PMID: 39292619 DOI: 10.1080/14787210.2024.2407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Several novel agents are in advanced stages of clinical development, potentially expanding our treatment options against third- and fourth-generation cephalosporin-resistant and carbapenem-resistant Gram-negative bacteria (GNB), including those pathogens for which the current number of effective treatments is limited. AREAS COVERED This review focuses on agents that have completed or ongoing phase-3 studies. A PubMed search was conducted up to 31 May 2024. EXPERT OPINION Novel agents in late-stage clinical development belong to the β-lactam or β-lactam/β-lactamase inhibitor combinations class and display variable antimicrobial activity depending on the specific β-lactamases expressed by GNB, particularly carbapenemases. While many of these novel agents demonstrate in vitro activity against carbapenem-resistant GNB, their efficacy has mainly been evaluated in phase-3 randomized controlled trials (RCT) for infections caused by carbapenem-susceptible GNB. Although evidence from real-world observational studies is generally less robust than that from RCT, it could be crucial for updating clinical guidelines on treating carbapenem-resistant GNB with these new agents in the absence of dedicated RCT.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
5
|
Morrissey I, Hawser S, Kothari N, Dunkel N, Quevedo J, Belley A, Henriksen AS, Attwood M. Evaluation of the activity of cefepime/enmetazobactam against Enterobacterales bacteria collected in Europe from 2019 to 2021, including third-generation cephalosporin-resistant isolates. J Glob Antimicrob Resist 2024; 38:71-82. [PMID: 38723712 DOI: 10.1016/j.jgar.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 06/24/2024] Open
Abstract
OBJECTIVES This study was performed to investigate the activity of the novel ß-lactam/ß-lactamase inhibitor combination cefepime/enmetazobactam, against recently circulating Enterobacterales isolates from Europe from 2019 to 2021. METHODS A total of 2627 isolates were collected, and antimicrobial susceptibility was determined according to the European Committee on Antimicrobial Susceptibility Testing guidelines. Isolates with phenotypic resistance to ceftriaxone and ceftazidime (but susceptible to meropenem) and isolates nonsusceptible to meropenem were screened for the presence of ß-lactamases. RESULTS Overall, susceptibility to third-generation cephalosporins was 77%, and 97.3% were susceptible to meropenem. Cefepime/enmetazobactam susceptibility was 97.9% (72% of these isolates were Klebsiella pneumoniae from Italy), compared with 80.0% susceptibility to piperacillin/tazobactam and 99.4% to ceftazidime/avibactam. A total of 320 isolates (12.2%) were resistant to third-generation cephalosporins but susceptible to meropenem, and virtually all (96.3%) carried an extended-spectrum ß-lactamase with or without an AmpC and these were all susceptible to cefepime/enmetazobactam. Most meropenem-nonsusceptible isolates carried a KPC (68%), which were not inhibited by cefepime/enmetazobactam but were inhibited by ceftazidime/avibactam. Additionally, most meropenem-nonsusceptible isolates carrying OXA-48 (9/12 isolates) were susceptible to cefepime/enmetazobactam. CONCLUSIONS Cefepime/enmetazobactam was highly active against Enterobacterales isolates, especially those resistant to third-generation cephalosporins. These data suggest that cefepime/enmetazobactam could be used as a carbapenem-sparing agent to replace piperacillin/tazobactam.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam Belley
- Allecra Therapeutics SAS, Saint-Louis, France
| | | | - Marie Attwood
- Bristol Centre for Antimicrobial Research & Evaluation (BCARE), Bristol, UK
| |
Collapse
|
6
|
Premachandra A, Moine P. Antibiotics in anesthesia and critical care. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:6. [PMID: 38304898 PMCID: PMC10777233 DOI: 10.21037/atm-22-5585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/06/2023] [Indexed: 02/03/2024]
Abstract
Sepsis is life-threatening organ dysfunction due to a dysregulated host response to an underlying acute infection. Sepsis is a major worldwide healthcare problem. An annual estimated 48.9 million incident cases of sepsis is reported, with 11 million (20%) sepsis-related deaths. Administration of appropriate antimicrobials is one of the most effective therapeutic interventions to reduce mortality. The severity of illness informs the urgency of antimicrobial administration. Nevertheless, even used properly, they cause adverse effects and contribute to the development of antibiotic resistance. Both inadequate and unnecessarily broad empiric antibiotics are associated with higher mortality and also select for antibiotic-resistant germs. In this narrative review, we will first discuss important factors and potential confounders which may influence the occurrence of surgical site infection (SSI) and which should be considered in the provision of perioperative antibiotic prophylaxis (PAP). Then, we will summarize recent advances and perspectives to optimize antibiotic therapy in the intensive care unit (ICU). Finally, the major role of the microbiota and the impact of antimicrobials on it will be discussed. While expert recommendations help guide daily practice in the operating theatre and ICU, a thorough knowledge of pharmacokinetic/pharmacodynamic (PK/PD) rules is critical to optimize the management of complex patients and minimize the emergence of multidrug-resistant organisms.
Collapse
Affiliation(s)
- Antoine Premachandra
- Department of Intensive Care, Hôpital Raymond Poincaré, Groupe Hospitalo-Universitaire GHU AP-HP, University Versailles Saint Quentin-University Paris-Saclay, Garches, France
| | - Pierre Moine
- Department of Intensive Care, Hôpital Raymond Poincaré, Groupe Hospitalo-Universitaire GHU AP-HP, University Versailles Saint Quentin-University Paris-Saclay, Garches, France
- Laboratory of Infection & Inflammation - U1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) - University Paris-Saclay - Institut National de la Santé et de la Recherche Médicale (INSERM), Garches, France
- Fédération Hospitalo-Universitaire FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
7
|
Bassetti M, Castaldo N, Fantin A, Giacobbe DR, Vena A. Antibiotic therapy for nonfermenting Gram-negative bacilli infections: future perspectives. Curr Opin Infect Dis 2023; 36:615-622. [PMID: 37846592 DOI: 10.1097/qco.0000000000000984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Serious infections caused by nonfermenting Gram-negative bacteria (NF-GNB) pose a significant challenge for clinicians due to the limited treatment options available, which are frequently associated with issues of toxicity and unfavourable pharmacokinetic profiles. The aim of this review is to provide a brief overview of the existing data concerning the ongoing development of antiinfective agents targeting NF-GNB. RECENT FINDINGS Several agents exhibiting efficacy against NF-GNB are under clinical investigation. Durlobactam-sulbactam and cefepime-taniborbactam emerge as promising therapeutic avenues against carbapenem-resistant Acinetobacter baumanii . Cefepime-zidebactam may serve as a suitable treatment option for urinary tract infections caused by a wide range of NF-GNB. Cefepime-enmetazobactam demonstrates potent in vitro activity against various NF-GNB strains; however, its role as an anti- Pseudomonal agent is inadequately substantiated by available data. Xeruborbactam is a wide β-lactamase inhibitor that can be associated with a range of agents, enhancing in-vitro activity of these against many NF-GNB, including those resistant to newer, broader spectrum options. Lastly, murepavadin appears to be a potential pathogen-specific solution for severe Pseudomonas infections; however, additional investigation is necessary to establish the safety profile of this compound. SUMMARY Each of the novel molecules reviewed possesses an interesting range of in-vitro activity against NF-GNB. In addition, some of them have already been proved effective in vivo, underscoring their potential as future treatment options.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| | - Nadia Castaldo
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alberto Fantin
- Department of Pulmonology, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| | - Antonio Vena
- Infectious Diseases Unit, Policlinico San Martino Hospital - IRCCS
- Department of Health Sciences (DISSAL), University of Genoa, Genoa
| |
Collapse
|
8
|
Le Terrier C, Nordmann P, Freret C, Seigneur M, POIREL L. Impact of Acquired Broad Spectrum β-Lactamases on Susceptibility to Novel Combinations Made of β-Lactams (Aztreonam, Cefepime, Meropenem, and Imipenem) and Novel β-Lactamase Inhibitors in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2023; 67:e0033923. [PMID: 37255469 PMCID: PMC10353362 DOI: 10.1128/aac.00339-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
The impact of broad-spectrum β-lactamases on the susceptibility to novel β-lactamase/β-lactamase inhibitor combinations was evaluated both in Pseudomonas aeruginosa and Escherichia coli using isogenic backgrounds. Cefepime-zidebactam displayed low MICs, mainly due to the significant intrinsic antibacterial activity of zidebactam. Cefepime-taniborbactam showed excellent activity against recombinant E. coli strains, including metallo-β-lactamase producers, whereas aztreonam-avibactam remained the best therapeutic option against class B β-lactamase-producing P. aeruginosa.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive care unit, University hospitals of Geneva, Geneva, Switzerland
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
- University of Lausanne and University hospital Center, Lausanne, Switzerland
| | - Charlotte Freret
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marion Seigneur
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurent POIREL
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
9
|
Reply to Shapiro, "Cefepime/Enmetazobactam Is a Clinically Effective Combination Targeting Extended-Spectrum β-Lactamase-Producing Enterobacterales". Antimicrob Agents Chemother 2022; 66:e0035322. [PMID: 35471039 DOI: 10.1128/aac.00353-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|