1
|
Başaran SN, Öksüz L. Newly developed antibiotics against multidrug-resistant and carbapenem-resistant Gram-negative bacteria: action and resistance mechanisms. Arch Microbiol 2025; 207:110. [PMID: 40172627 DOI: 10.1007/s00203-025-04298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 03/06/2025] [Indexed: 04/04/2025]
Abstract
Antimicrobial resistance stands as one of the most urgent global health concerns in the twenty-first century, with projections suggesting that deaths related to drug-resistant infections could escalate to 10 million by 2050 if proactive measures are not implemented. In intensive care settings, managing infections caused by multidrug-resistant (MDR) Gram-negative bacteria is particularly challenging, posing a significant threat to public health and contributing substantially to both morbidity and mortality. There are numerous studies on the antibiotics responsible for resistance in Gram-negative bacteria, but comprehensive research on resistance mechanisms against new antibiotics is rare. Considering the possibility that antibiotics may no longer be effective in combating diseases, it is crucial to comprehend the problem of emerging resistance to newly developed antibiotics and to implement preventive measures to curb the spread of resistance. Mutations in porins and efflux pumps play a crucial role in antibiotic resistance by altering drug permeability and active efflux. Porin modifications reduce the influx of antibiotics, whereas overexpression of efflux pumps, particularly those in the resistance-nodulation-cell division (RND) family, actively expels antibiotics from bacterial cells, significantly lowering intracellular drug concentrations and leading to treatment failure.This review examines the mechanisms of action, resistance profiles, and pharmacokinetic/pharmacodynamic characteristics of newly developed antibiotics designed to combat infections caused by MDR and carbapenem-resistant Gram-negative pathogens. The antibiotics discussed include ceftazidime-avibactam, imipenem-relebactam, ceftolozane-tazobactam, meropenem-vaborbactam, aztreonam-avibactam, delafloxacin, temocillin, plazomicin, cefiderocol, and eravacycline.
Collapse
Affiliation(s)
- Sena Nur Başaran
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Istanbul University, Institute of Graduate Studies in Health Sciences, Istanbul, Turkey.
- Department of Medical Microbiology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Brousse X, Andry F, Lahouati M, Desmoulin A, Lehours P, Rignol L, Petitgas P, Leroy AG, Charroyer Q. Temocillin efficacy against AmpC β-lactamase-producing Enterobacterales: a relevant alternative to cefepime? J Antimicrob Chemother 2025; 80:576-582. [PMID: 39710890 DOI: 10.1093/jac/dkae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION Temocillin is a semi-synthetic β-lactam with a narrow spectrum but high stability against hydrolysis by β-lactamases, including AmpC. Despite its favourable properties, data regarding its clinical value in the treatment of AmpC β-lactamase-producing Enterobacterales (ABPE) infections are scarce. Most recent guidelines do not include temocillin in the therapeutic strategy for ABPE infection. OBJECTIVES This study investigated (i) the proportion of ABPE isolates susceptible to temocillin and (ii) the clinical outcomes of patients treated with temocillin for ABPE infections. MATERIALS AND METHODS This retrospective multicentre (Bordeaux and Reunion Island) study was performed in two parts. First, all the antimicrobial susceptibility test (AST) results of ABPE isolated from May 2021 to August 2023 were included in the analysis. Second, all patients who had received at least one dose of temocillin for ABPE infection between 2017 and 2023 were analysed. The electronic clinical records of these patients were reviewed to determine their treatment outcomes. Therapeutic success was defined as the absence of relapse one month after the end of temocillin treatment (3 months in the case of bone and joint infection) and the absence of treatment modification following an unfavourable outcome. RESULTS During the microbiologic period of investigation (2021-23), 5166 ABPE strains were included. Of these, 4253 (82%) were susceptible to temocillin, whereas 4564 (88%) were susceptible to cefepime. After restriction to third-generation cephalosporin-resistant (3GCR) ABPE strains (n = 1446), the proportion of strains susceptible to temocillin was 66% (n = 1227) versus 59% (n = 1092) for cefepime. Temocillin treatment was initiated in 67 patients with ABPE infection during the study period (2017-23). The main infections were complicated urinary tract infections (n = 32, 48%) and bone and joint infections (n = 15, 22%). The estimated overall success rate for patients who underwent complete follow-up was 89% (n = 56/63). CONCLUSIONS Temocillin appears to be reliable for ABPE infections. Our data showed a high therapeutic success rate. Its high tolerability, narrow spectrum and ease of administration could make temocillin a relevant alternative to cefepime, the current standard for ABPE infection.
Collapse
Affiliation(s)
- Xavier Brousse
- Infectious Diseases Unit, CHU de Bordeaux, Bordeaux, F-33000, France
- Infectious Diseases Unit, CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Fanny Andry
- Infectious Diseases Unit, CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Marin Lahouati
- Clinical Pharmacy Department, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Anissa Desmoulin
- Infectious Diseases Unit, CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Philippe Lehours
- Bacteriology Laboratory, CHU de Bordeaux, Bordeaux, F-33000, France
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Laurine Rignol
- Clinical Pharmacy Department, CHU de Bordeaux, Bordeaux, F-33000, France
| | - Paul Petitgas
- Infectious Diseases Unit, CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Anne-Gaëlle Leroy
- Bacteriology Laboratory, CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| | - Quentin Charroyer
- Infectious Diseases Unit, CHU de La Réunion, Saint-Pierre, La Réunion, 97410, France
| |
Collapse
|
3
|
Yang C, Wang L, Lv J, Wen Y, Gao Q, Qian F, Tian X, Zhu J, Zhu Z, Chen L, Du H. Effects of different carbapenemase and siderophore production on cefiderocol susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2024; 68:e0101924. [PMID: 39470196 PMCID: PMC11619314 DOI: 10.1128/aac.01019-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
The resistance mechanism of Gram-negative bacteria to the siderophore antibiotic cefiderocol is primarily attributed to carbapenemase and siderophore uptake pathways; however, specific factors and their relationships remain to be fully elucidated. Here, we constructed cefiderocol-resistant Klebsiella pneumoniae (CRKP) strains carrying different carbapenemases and knocked out siderophore genes to investigate the roles of various carbapenemases and siderophores in the development of cefiderocol resistance. Antimicrobial susceptibility testing revealed that both blaNDM and blaKPC significantly increased the minimum inhibitory concentration (MIC) of Klebsiella pneumoniae (KP) to cefiderocol, while blaOXA-48 showed a modest increase. Notably, KP expressing NDM exhibited a higher cefiderocol MIC compared to KP expressing KPC, although expression of NDM alone did not induce cefiderocol resistance. Laboratory evolutionary experiments demonstrated that combining pNDM with mutations in the siderophore uptake receptor gene cirA and pKPC with a mutation in the two-component system gene envZ led to KP reaching a high level of cefiderocol resistance. Although combining pOXA with mutations in the two-component system gene baeS did not induce cefiderocol resistance, it significantly reduced susceptibility. Moreover, siderophores could influence the development of cefiderocol resistance. Strains deficient in enterobactin exhibited increased susceptibility to cefiderocol, while deficiencies in yersiniabactin and salmochelin showed no significant alterations. In conclusion, carbapenemase gene expression facilitates cefiderocol resistance, but its presence alone is insufficient. Cefiderocol resistance in CRKP typically involves abnormal expression of certain genes and other factors, such as mutations in siderophore uptake receptor genes and two-component system genes. The enterobactin siderophore synthesis gene entB may also contribute to resistance.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology and Application for Detection of Major Infectious Diseases, Suzhou, China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qizhao Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feinan Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangxiang Tian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Key Laboratory of Alkene-Carbon Fibres-Based Technology and Application for Detection of Major Infectious Diseases, Suzhou, China
| |
Collapse
|
4
|
Mallart E, Guerin F, Amoura A, Le Scouarnec M, Hamon A, El Meouche I, Chau F, Lefort A, Fantin B, Cattoir V, de Lastours V. Impact of the phenotypic expression of temocillin resistance in Escherichia coli on temocillin efficacy in a murine peritonitis model. J Antimicrob Chemother 2024; 79:1051-1059. [PMID: 38501355 DOI: 10.1093/jac/dkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Temocillin is a narrow spectrum β-lactam active against MDR Enterobacterales. Mechanisms of acquired resistance to temocillin are poorly understood. We analysed resistance mechanisms in clinical isolates of Escherichia coli and evaluated their impact on temocillin efficacy in vitro and in a murine peritonitis model. METHODS Two sets of isogenic clinical E. coli strains were studied: a susceptible isolate (MLTEM16S) and its resistant derivative, MLTEM16R (mutation in nmpC porin gene); and temocillin-resistant derivatives of E. coli CFT073: CFT-ΔnmpC (nmpC deletion), CFTbaeS-TP and CFTbaeS-AP (two different mutations in the baeS efflux-pump gene).Fitness cost, time-kill curves and phenotypic expression of resistance were determined. Temocillin efficacy was assessed in a murine peritonitis model. RESULTS MICs of temocillin were 16 and 64 mg/L for MLTEM16S and MLTEM16R, respectively, and 8, 128, 256 and 256 mg/L for E. coli-CFT073, CFT-ΔnmpC, CFTbaeS-TP and CFTbaeS-AP, respectively. No fitness cost of resistance was evidenced. All resistant strains showed heteroresistant profiles, except for CFTbaeS-AP, which displayed a homogeneous pattern. In vitro, temocillin was bactericidal against MLTEM16R, CFT-ΔnmpC, CFTbaeS-TP and CFTbaeS-AP at 128, 256, 512 and 512 mg/L, respectively. In vivo, temocillin was as effective as cefotaxime against MLTEM16R, CFT-ΔnmpC and CFTbaeS-TP, but inefficient against CFTbaeS-AP (100% mortality). CONCLUSIONS Heteroresistant NmpC porin alteration and active efflux modification do not influence temocillin efficacy despite high MIC values, unfavourable pharmacokinetic/pharmacodynamic conditions and the absence of fitness cost, whereas homogeneously expressed BaeS efflux pump alteration yielding similar MICs leads to temocillin inefficacy. MIC as sole predictor of temocillin efficacy should be used with caution.
Collapse
Affiliation(s)
- Elise Mallart
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - François Guerin
- UMR1230, INSERM and Université Rennes 1, F-35043 Rennes, France
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Pontchaillou, F-35033 Rennes, France
| | - Ariane Amoura
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Matthieu Le Scouarnec
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Pontchaillou, F-35033 Rennes, France
| | - Antoine Hamon
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Imane El Meouche
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Françoise Chau
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
| | - Agnès Lefort
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Université Paris Cité, F-92210 Clichy, France
| | - Bruno Fantin
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Université Paris Cité, F-92210 Clichy, France
| | - Vincent Cattoir
- UMR1230, INSERM and Université Rennes 1, F-35043 Rennes, France
- Service de Bactériologie-Hygiène Hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU Pontchaillou, F-35033 Rennes, France
| | - Victoire de Lastours
- IAME Research Group, UMR1137 INSERM and Uiversité Paris Cité, F-75018 Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Université Paris Cité, F-92210 Clichy, France
| |
Collapse
|
5
|
Rodríguez-Ochoa JL, Pérez-Palacios P, Merino-Bohórquez V, Ortiz-Padilla M, Velázquez-Escudero A, Rodríguez-Baño J, Rodríguez-Martínez JM, Pascual Á, Docobo-Pérez F. Evaluation of temocillin efficacy against KPC-2-producing Klebsiella pneumoniae isolates in a hollow-fibre infection model. J Antimicrob Chemother 2024; 79:784-789. [PMID: 38334407 PMCID: PMC10984927 DOI: 10.1093/jac/dkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Temocillin is an old antimicrobial that is resistant to hydrolysis by ESBLs but has variable activity against carbapenemase-producing Enterobacteriaceae. The current EUCAST susceptibility breakpoints for Enterobacterales are set at ≤16 mg/L (susceptible with increased exposure) based on a dose of 2 g q8h, but there is limited information on the efficacy of this dose against temocillin-susceptible carbapenemase-producing Klebsiella pneumoniae isolates. OBJECTIVES To evaluate the efficacy of this dose using a hollow-fibre infection model (HFIM) against six KPC-2-producing clinical isolates of K. pneumoniae. METHODS The isolates were characterized by WGS and temocillin susceptibility was determined using standard and high inoculum temocillin. Mutant frequencies were estimated and temocillin activity was tested in time-kill assays and in the HFIM. At standard conditions, three of the isolates were classified as susceptible (MIC ≤ 16 mg/L) and three as resistant (MIC > 16 mg/L). The HFIM was performed over 3 days to mimic human-like pharmacokinetics of 2 g q8h. Bacterial counts were performed by plating on Mueller-Hinton agar (MHA) and MHA containing 64 mg/L temocillin to detect resistant subpopulations. RESULTS All isolates showed a reduction in bacterial population of at least 3 log cfu/mL within the first 8 h of simulated treatment in the hollow-fibre assay. Regrowth was observed for the three resistant isolates and one of the susceptible ones. The MIC value for these isolates was higher by at least two dilutions compared with their initial values. CONCLUSIONS These data suggest that an optimized pharmacokinetic regimen may be of clinical interest for the treatment of KPC-2-producing K. pneumoniae susceptible to temocillin. These data showed activity of temocillin against KPC-2-producing K. pneumoniae susceptible to temocillin; however, a dose of 2g q8h administered over 30 min may be inadequate to prevent the emergence of resistant variants.
Collapse
Affiliation(s)
- José Luis Rodríguez-Ochoa
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Patricia Pérez-Palacios
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Vicente Merino-Bohórquez
- Unidad de Gestión de Farmacia Hospitalaria, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Miriam Ortiz-Padilla
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ana Velázquez-Escudero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Rodríguez-Martínez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán s/n., 41009 Sevilla, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán s/n., 41009 Sevilla, Spain
| | - Fernando Docobo-Pérez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán s/n., 41009 Sevilla, Spain
| |
Collapse
|
6
|
Pérez-Palacios P, Rodríguez-Ochoa JL, Velázquez-Escudero A, Rodríguez-Baño J, Rodríguez-Martínez JM, Pascual Á, Docobo-Pérez F. Implications of two-component systems EnvZ/OmpR and BaeS/BaeR in in vitro temocillin resistance in Escherichia coli. J Antimicrob Chemother 2024; 79:641-647. [PMID: 38305703 PMCID: PMC10904727 DOI: 10.1093/jac/dkae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND BaeS/BaeR is a two-component system of Escherichia coli that controls the expression of porins and efflux pumps. Its role in beta-lactam resistance is limited. OBJECTIVES To study the role of baeS/baeR two-component system in temocillin resistance in E. coli. METHODS E. coli strain BW25113 and single-gene deletion mutants related to two-component systems were collected from the KEIO collection. Double-gen deletion mutants were generated. Temocillin-resistant mutant frequencies were determined at 32 mg/L. E. coli BW25113 mutants were selected by selective pressure from serial passages. Biological costs were analysed by growth curves. Genomes of the generated mutants were sequenced. The expression level of the mdtA, mdtB, mdtC, acrD and tolC in the ΔbaeS mutant was determined by RT-PCR (with/without temocillin exposure). RESULTS The frequency of temocillin mutants ranged from 2.12 × 10-8 to 4.51 × 10-8 in single-porin mutants. No mutants were recovered from E. coli BW25113 (>10-9). Selection of temocillin-resistant variants by serial passage yielded mutants up to 128 mg/L. Mutations were found in the baeS gene. Temocillin MICs ranged from 4 to 32 mg/L (highest MICs for ΔbaeS and ΔompR). The efflux pumps mdtA, mdtB, mdtC and acrD pumps were overexpressed 3-10-fold in the presence of temocillin in ΔbaeS compared to control. CONCLUSIONS Mutations in the sensor histidine kinase, baeS, may be involved in temocillin resistance through the expression of the efflux pumps mdtABC and acrD. In addition, the low mutation rate may be a good predictor of temocillin activity.
Collapse
Affiliation(s)
- Patricia Pérez-Palacios
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - José Luis Rodríguez-Ochoa
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Ana Velázquez-Escudero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Jesús Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Rodríguez-Martínez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Álvaro Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Fernando Docobo-Pérez
- Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Rodrigues SH, Nunes GD, Soares GG, Ferreira RL, Damas MSF, Laprega PM, Shilling RE, Campos LC, da Costa AS, Malavazi I, da Cunha AF, Pranchevicius MCDS. First report of coexistence of blaKPC-2 and blaNDM-1 in carbapenem-resistant clinical isolates of Klebsiella aerogenes in Brazil. Front Microbiol 2024; 15:1352851. [PMID: 38426065 PMCID: PMC10903355 DOI: 10.3389/fmicb.2024.1352851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Klebsiella aerogenes is an important opportunistic pathogen with the potential to develop resistance against last-line antibiotics, such as carbapenems, limiting the treatment options. Here, we investigated the antibiotic resistance profiles of 10 K. aerogenes strains isolated from patient samples in the intensive-care unit of a Brazilian tertiary hospital using conventional PCR and a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. All isolates were completely resistant to β-lactam antibiotics, including ertapenem, imipenem, and meropenem with differencing levels of resistance to aminoglycosides, quinolones, and tigecycline also observed. Half of the strains studied were classified as multidrug-resistant. The carbapenemase-producing isolates carried many genes of interest including: β-lactams (blaNDM-1, blaKPC-2, blaTEM-1, blaCTX-M-1 group, blaOXA-1 group and blaSHVvariants in 20-80% of the strains), aminoglycoside resistance genes [aac(6')-Ib and aph(3')-VI, 70 and 80%], a fluoroquinolone resistance gene (qnrS, 80%), a sulfonamide resistance gene (sul-2, 80%) and a multidrug efflux system transporter (mdtK, 70%) while all strains carried the efflux pumps Acr (subunit A) and tolC. Moreover, we performed a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. The draft genome assembly of the CRK317 had a total length of 5,462,831 bp and a GC content of 54.8%. The chromosome was found to contain many essential genes. In silico analysis identified many genes associated with resistance phenotypes, including β-lactamases (blaOXA-9, blaTEM-1, blaNDM-1, blaCTX-M-15, blaAmpC-1, blaAmpC-2), the bleomycin resistance gene (bleMBL), an erythromycin resistance methylase (ermC), aminoglycoside-modifying enzymes [aac(6')-Ib, aadA/ant(3")-Ia, aph(3')-VI], a sulfonamide resistance enzyme (sul-2), a chloramphenicol acetyltransferase (catA-like), a plasmid-mediated quinolone resistance protein (qnrS1), a glutathione transferase (fosA), PEtN transferases (eptA, eptB) and a glycosyltransferase (arnT). We also detected 22 genomic islands, eight families of insertion sequences, two putative integrative and conjugative elements with a type IV secretion system, and eight prophage regions. This suggests the significant involvement of these genetic structures in the dissemination of antibiotic resistance. The results of our study show that the emergence of carbapenemase-producing K. aerogenes, co-harboring blaKPC-2 and blaNDM-1, is a worrying phenomenon which highlights the importance of developing strategies to detect, prevent, and control the spread of these microorganisms.
Collapse
Affiliation(s)
- Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Dantas Nunes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Delpierre E, Lanoix JP. Successful prophylaxis of ESBL Enterobacteriaceae repetitive urinary tract infections with subcutaneous temocillin: a case report. JAC Antimicrob Resist 2024; 6:dlad154. [PMID: 38186566 PMCID: PMC10768877 DOI: 10.1093/jacamr/dlad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Objectives Temocillin is an antibiotic belonging to the β-lactam family, introduced in 1988 but soon forgotten because of its narrow spectrum. Recently, it has been repurposed for its effectiveness against ESBL Enterobacteriaceae, and represents an alternative of choice to carbapenems due to its limited impact on the microbiota. Patient We present here a successful case of antibiotic prophylaxis of recurrent ESBL urinary tract infections with subcutaneously administered temocillin. Conclusions Temocillin is rarely administered subcutaneously and even more rarely in prophylactic situations. However, its tolerance profile and low impact on the microbiota should help reconsideration of its use in particular cases like this one.
Collapse
Affiliation(s)
- Eloïse Delpierre
- Infectious Disease Department, Amiens-Picardie University Hospital, FR-80000, Amiens, France
| | - Jean-Philippe Lanoix
- Infectious Disease Department, Amiens-Picardie University Hospital, FR-80000, Amiens, France
- AGIR EA4294, Medicine Department, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|