1
|
Opazo-Capurro A, Xanthopoulou K, Arazo del Pino R, González-Muñoz P, Matus-Köhler M, Amsteins-Romero L, Jerez-Olate C, Hormazábal JC, Vera R, Aguilera F, Fuller S, Higgins PG, González-Rocha G. Co-Occurrence of Two Plasmids Encoding Transferable blaNDM-1 and tet(Y) Genes in Carbapenem-Resistant Acinetobacter bereziniae. Genes (Basel) 2024; 15:1213. [PMID: 39336804 PMCID: PMC11431271 DOI: 10.3390/genes15091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Acinetobacter bereziniae has emerged as a significant human pathogen, acquiring multiple antibiotic resistance genes, including carbapenemases. This study focuses on characterizing the plasmids harboring the blaNDM-1 and tet(Y) genes in two carbapenem-resistant A. bereziniae isolates (UCO-553 and UCO-554) obtained in Chile during the COVID-19 pandemic. Methods: Antibiotic susceptibility testing was conducted on UCO-553 and UCO-554. Both isolates underwent whole-genome sequencing to ascertain their sequence type (ST), core genome multilocus sequence-typing (cgMLST) profile, antibiotic resistance genes, plasmids, and mobile genetic elements. Conjugation experiments were performed for both isolates. Results: Both isolates exhibited broad resistance, including resistance to carbapenems, third-generation cephalosporins, fluoroquinolones, tetracycline, cotrimoxazole, and aminoglycosides. Both isolates belong to sequence type STPAS1761, with a difference of 17 out of 2984 alleles. Each isolate carried a 47,274 bp plasmid with blaNDM-1 and aph(3')-VI genes and two highly similar plasmids: a 35,184 bp plasmid with tet(Y), sul2, aph(6)-Id, and aph(3″)-Ib genes, and a 6078 bp plasmid containing the ant(2″)-Ia gene. Quinolone-resistance mutations were identified in the gyrA and parC genes of both isolates. Importantly, blaNDM-1 was located within a Tn125 transposon, and tet(Y) was embedded in a Tn5393 transposon. Conjugation experiments successfully transferred blaNDM-1 and tet(Y) into the A. baumannii ATCC 19606 strain, indicating the potential for horizontal gene transfer. Conclusions: This study highlights the critical role of plasmids in disseminating resistance genes in A. bereziniae and underscores the need for the continued genomic surveillance of this emerging pathogen. The findings emphasize the importance of monitoring A. bereziniae for its potential to cause difficult-to-treat infections and its capacity to spread resistance determinants against clinically significant antibiotics.
Collapse
Affiliation(s)
- Andrés Opazo-Capurro
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Universidad de Concepción, Concepción 4070386, Chile; (A.O.-C.); (P.G.-M.); (M.M.-K.); (L.A.-R.); (C.J.-O.)
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070386, Chile
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (K.X.); (R.A.d.P.)
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, D-50937 Cologne, Germany
| | - Rocío Arazo del Pino
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (K.X.); (R.A.d.P.)
| | - Paulina González-Muñoz
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Universidad de Concepción, Concepción 4070386, Chile; (A.O.-C.); (P.G.-M.); (M.M.-K.); (L.A.-R.); (C.J.-O.)
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción 4070386, Chile
| | - Maximiliano Matus-Köhler
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Universidad de Concepción, Concepción 4070386, Chile; (A.O.-C.); (P.G.-M.); (M.M.-K.); (L.A.-R.); (C.J.-O.)
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070386, Chile
| | - Luis Amsteins-Romero
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Universidad de Concepción, Concepción 4070386, Chile; (A.O.-C.); (P.G.-M.); (M.M.-K.); (L.A.-R.); (C.J.-O.)
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070386, Chile
| | - Christian Jerez-Olate
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Universidad de Concepción, Concepción 4070386, Chile; (A.O.-C.); (P.G.-M.); (M.M.-K.); (L.A.-R.); (C.J.-O.)
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070386, Chile
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Concepción 4070386, Chile
| | | | - Rodrigo Vera
- Hospital de Urgencia Asistencia Pública, Santiago 8320000, Chile;
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile; (F.A.); (S.F.)
- Centro de Biotecnología, Universidad de Concepción, Concepción 4070386, Chile
| | - Sebastián Fuller
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile; (F.A.); (S.F.)
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50937 Cologne, Germany; (K.X.); (R.A.d.P.)
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, D-50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50937 Cologne, Germany
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos (LIAA), Universidad de Concepción, Concepción 4070386, Chile; (A.O.-C.); (P.G.-M.); (M.M.-K.); (L.A.-R.); (C.J.-O.)
- Grupo de Estudio en Resistencia Antimicrobiana (GRAM), Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
2
|
Stehling EG, Sellera FP, de Almeida OGG, Gonzalez IHL, Ramos PL, da Rosa-Garzon NG, von Zeska Kress MR, Cabral H, Furlan JPR. Genomic features and comparative analysis of a multidrug-resistant Acinetobacter bereziniae strain infecting an animal: a novel emerging one health pathogen? World J Microbiol Biotechnol 2024; 40:63. [PMID: 38190002 DOI: 10.1007/s11274-023-03867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Acinetobacter bereziniae has recently gained medical notoriety due to its emergence as a multidrug resistance and healthcare-associated pathogen. In this study, we report the whole-genome characterization of an A. bereziniae strain (A321) recovered from an infected semiaquatic turtle, as well as a comparative analysis of A. bereziniae strains circulating at the human-animal-environment interface. Strain A321 displayed a multidrug resistance profile to medically important antimicrobials, which was supported by a wide resistome. The novel Tn5393m transposon and a qnrB19-bearing ColE1-like plasmid were identified in A321 strain. Novel OXA-229-like β-lactamases were detected and expression of OXA-931 demonstrated a 2-64-fold increase in the minimum inhibitory concentration for β-lactam agents. Comparative genomic analysis revealed that most A. bereziniae strains did not carry any antimicrobial resistance genes (ARGs); however, some strains from China, Brazil, and India harbored six or more ARGs. Furthermore, A. bereziniae strains harbored conserved virulence genes. These results add valuable information regarding the spread of ARGs and mobile genetic elements that could be shared not only between A. bereziniae but also by other bacteria of clinical interest. This study also demonstrates that A. bereziniae can spill over from anthropogenic sources into natural environments and subsequently be transmitted to non-human hosts, making this a potential One Health bacteria that require close surveillance.
Collapse
Affiliation(s)
- Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Otávio Guilherme Gonçalves de Almeida
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Irys Hany Lima Gonzalez
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Patrícia Locosque Ramos
- Coordination of Wild Fauna, Secretary of Environment, Infrastructure and Logistics, São Paulo, Brazil
| | - Nathália Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Marcia Regina von Zeska Kress
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Merlino J, Rizzo S, Beresford R, Gray T. Isolation of Acinetobacter bereziniae harbouring plasmid bla NDM-1 in central Sydney, Australia. Pathology 2023; 55:867-868. [PMID: 37169647 DOI: 10.1016/j.pathol.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 05/13/2023]
Affiliation(s)
- John Merlino
- Department of Microbiology and Infectious Diseases, Concord Hospital, NSW Health Pathology, Sydney, NSW, Australia; School of Medical Sciences, Department of Infection and Immunity, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Sophia Rizzo
- Department of Microbiology and Infectious Diseases, Concord Hospital, NSW Health Pathology, Sydney, NSW, Australia
| | - Rohan Beresford
- Department of Microbiology and Infectious Diseases, Concord Hospital, NSW Health Pathology, Sydney, NSW, Australia
| | - Timothy Gray
- Department of Microbiology and Infectious Diseases, Concord Hospital, NSW Health Pathology, Sydney, NSW, Australia; Concord Hospital Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Mo XM, Pan Q, Seifert H, Xing XW, Yuan J, Zhou ZY, Luo XY, Liu HM, Xie YL, Yang LQ, Hong XB, Higgins PG, Wong NK. First identification of multidrug-resistant Acinetobacter bereziniae isolates harboring bla NDM-1 from hospitals in South China. Heliyon 2023; 9:e12365. [PMID: 36699260 PMCID: PMC9868374 DOI: 10.1016/j.heliyon.2022.e12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
This study is a first report on the identification of multidrug-resistant (MDR) Acinetobacter bereziniae among non-baumannii acinetobacters that had previously escaped automated laboratory detection, and characterize their clinical courses of infection at two tertiary-care hospitals in Shenzhen city, China (2015-2017). Herein, definitive identification by PCR was performed with universal and species-specific primers targeting 16S rDNA and rpoB genes, respectively, followed by Sanger sequencing and blast analysis. Antimicrobial susceptibility of A. bereziniae isolates was assessed accordingly. Three of the five identified A. bereziniae isolates exhibited carbapenem-resistance and were subjected to a multiplex PCR assay to detect drug-resistance genes. Sequences of the rpoB amplicon were aligned with curated sequences from global databases for phylogenetic analysis on evolutionary relations. Five clinical isolates of A. bereziniae were thereby re-identified, whose infections were primarily nosocomial. Automated identification and susceptibility testing systems (Phoenix-100 and VITEK 2) proved insufficient for discriminating A. bereziniae from other acinetobacters such as Acinetobacter baumannii and Acinetobacter guillouiae. Among these isolates, three exhibited carbapenem-resistant phenotypes indistinguishable from that of carbapenem-resistant A. baumannii. The carbapenem-resistant A. bereziniae isolates were subsequently confirmed to carry a bla NDM-1 (New Delhi metallo-β-lactamase-1) gene downstream of ISAba125. Phylogenetic analysis revealed that A. bereziniae isolates evolved slowly but independently in local habitats. A. bereziniae isolates are difficult to distinguish by traditional automated detection systems. PCR-based identification via amplification and sequencing of selected house-keeping genes provides sufficient resolution for discriminating the isolates.
Collapse
Affiliation(s)
- Xiao-Mei Mo
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Qing Pan
- AlphaMol Science Ltd., Shenzhen, China
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Xi-Wen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Jing Yuan
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zi-Yuan Zhou
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xing-Yu Luo
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hou-Ming Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yong-Li Xie
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, China
| | - Liu-Qing Yang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Bing Hong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Nai-Kei Wong
- Clinical Pharmacology Section, Department of Pharmacology, Shantou University Medical College, Shantou, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Kangale LJ, Raoult D, Fournier PE, Ghigo E. Culturomics revealed the bacterial constituents of the microbiota of a 10-year-old laboratory culture of planarian species S. mediterranea. Sci Rep 2021; 11:24311. [PMID: 34934139 PMCID: PMC8692324 DOI: 10.1038/s41598-021-03719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
The planarian species Schmidtea mediterranea is a flatworm living in freshwater that is used in the research laboratory as a model to study developmental and regeneration mechanisms, as well as antibacterial mechanisms. However, the cultivable microbial repertoire of the microbes comprising its microbiota remains unknown. Here, we characterized the bacterial constituents of a 10-year-old laboratory culture of planarian species S. mediterranea via culturomics analysis. We isolated 40 cultivable bacterial species, including 1 unidentifiable species. The predominant phylum is Proteobacteria, and the most common genus is Pseudomonas. We discovered that parts of the bacterial flora of the planarian S. mediterranea can be classified as fish pathogens and opportunistic human pathogens.
Collapse
Affiliation(s)
- Luis Johnson Kangale
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée-Infection, Marseille, France.,Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée-Infection, Marseille, France.
| | - Eric Ghigo
- IHU-Méditerranée-Infection, Marseille, France. .,TechnoJouvence, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
6
|
Cameranesi MM, Kurth D, Repizo GD. Acinetobacter defence mechanisms against biological aggressors and their use as alternative therapeutic applications. Crit Rev Microbiol 2021; 48:21-41. [PMID: 34289313 DOI: 10.1080/1040841x.2021.1939266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several Acinetobacter strains are important nosocomial pathogens, with Acinetobacter baumannii being the species of greatest worldwide concern due to its multi-drug resistance and the recent appearance of hyper-virulent strains in the clinical setting. Colonisation of this environment is associated with a multitude of bacterial factors, and the molecular features that promote environmental persistence in abiotic surfaces, including intrinsic desiccation resistance, biofilm formation and motility, have been previously addressed. On the contrary, mechanisms enabling Acinetobacter spp. survival when faced against other biological competitors are starting to be characterised. Among them, secretion systems (SS) of different types, such as the T5bSS (Contact-dependent inhibition systems) and the T6SS, confer adaptive advantages against bacterial aggressors. Regarding mechanisms of defence against bacteriophages, such as toxin-antitoxin, restriction-modification, Crispr-Cas and CBASS, among others, have been identified but remain poorly characterised. In view of this, we aimed to summarise the present knowledge on defence mechanisms that enable niche establishment in members of the Acinetobacter genus. Different proposals are also described for the use of some components of these systems as molecular tools to treat Acinetobacter infections.
Collapse
Affiliation(s)
- María Marcela Cameranesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), San Miguel de Tucumán, Argentina
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
7
|
Brovedan MA, Cameranesi MM, Limansky AS, Morán-Barrio J, Marchiaro P, Repizo GD. What do we know about plasmids carried by members of the Acinetobacter genus? World J Microbiol Biotechnol 2020; 36:109. [PMID: 32656745 DOI: 10.1007/s11274-020-02890-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Abstract
Several Acinetobacter spp. act as opportunistic pathogens causing healthcare-associated infections worldwide, and in this respect their ability to resist antimicrobial compounds has certainly boosted up their global propagation. Acinetobacter clinical strains have demonstrated a remarkable ability to evolve and become resistant to almost all available drugs in the antimicrobial arsenal, including the last-resort carbapenem β-lactams. The dissemination of antimicrobial resistant genes (ARG), heavy metals-detoxification systems and other traits such as virulence factors is facilitated by mobile genetic elements (MGE) through horizontal gene transfer. Among them, plasmids have been shown to play a critical role in this genus. Despite the continuous increase of Acinetobacter plasmid sequences present in databases, there are no reports describing the basic traits carried by these MGE. To fill this gap, a broad analysis of the Acinetobacter plasmidome was performed. A search for Acinetobacter complete plasmids indicated that 905 sequences have been deposited in the NCBI-GenBank public database, of which 492 are harbored by Acinetobacter baumannii strains. Plasmid-classification schemes based on Rep proteins homology have so far described 23 different groups for A. baumannii (GR1-23), and 16 Acinetobacter Rep3 Groups (AR3G1-16) for the complete genus. Acinetobacter plasmids size ranges from 1.3 to 400 kb. Interestingly, widespread plasmids which are < 20 kb make up 56% of the total present in members of this genus. This led to the proposal of Acinetobacter plasmid assignation to two groups according to their size (< 20 kb and > 20 kb). Usually, smaller plasmids are not self-transmissible, and thereby employ alternative mechanisms of dissemination. For instance, a subgroup of < 20 kb-plasmids belonging to the pRAY-family, lack a rep gene, but encode a relaxase enabling their mobilization by conjugative plasmids. Other subgroup, including small GR2 Acinetobacter plasmids, does not encode a relaxase gene. However, they could still be mobilized by conjugative plasmids which recognize an oriT region carried by these small plasmids. Also, these < 20 kb-plasmids usually carry accessory genes bordered by XerC/D-recombinases recognition sites which have been hypothesized to mediate plasmid plasticity. Conversely, many cases of larger plasmids are self-transmissible and might encode virulence factors and their regulators, thus controlling strain pathogenicity. The ARGs carried by the > 20 kb-plasmids are usually encoded within other MGEs such as transposons, or as part of integrons. It has been recently noted that some of the > 20 kb-plasmids are derived from excised phages, and thus dubbed as phage-like plasmids. All in all, the plethora of plasmids found in strains of this genus and the multiple strategies promoting their evolution and dissemination have certainly contributed to survival of the Acinetobacter members in different habitats, including the clinical environment.
Collapse
Affiliation(s)
- Marco A Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María M Cameranesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Adriana S Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Morán-Barrio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo D Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Laboratorio de Resistencia a Antimicrobianos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
8
|
Wang K, Li P, Li J, Hu X, Lin Y, Yang L, Qiu S, Ma H, Li P, Song H. An NDM-1-Producing Acinetobacter towneri Isolate from Hospital Sewage in China. Infect Drug Resist 2020; 13:1105-1110. [PMID: 32368101 PMCID: PMC7170623 DOI: 10.2147/idr.s246697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background The New Delhi metallo-β-lactamase-1 (NDM-1)-positive plasmid and its variants pose daunting threats to public health. Hospital sewage was considered as an important reservoir of antibiotic genes. Numerous and diverse taxa of multidrug-resistant (MDR) bacteria carrying NDM-1-positive plasmids have been identified during routine surveillance of hospital sewage. We herein report a carbapenem-resistant Acinetobacter towneri strain AeBJ009 with an NDM-1-positive plasmid isolated from hospital sewage. Materials and Methods Bacteria were isolated from cultures of hospital sewage and identified by using the Vitek 2 compact system and 16S rRNA sequencing. The bla NDM-1 gene was amplified and confirmed by sequencing. Antimicrobial susceptibility testing was performed using AST-GN14 on the Vitek2 compact system. In addition, the bla NDM-1 gene was located by Southern blotting. Conjugation experiment and whole-genome sequencing were performed for further analysis. Results Strain AeBJ009 was isolated from hospital sewage and identified as A. towneri. Antimicrobial susceptibility testing revealed an MDR phenotype. Pulsed-field gel electrophoresis and Southern blotting showed that strain AeBJ009 carries three plasmids and that bla NDM-1 is located on the 47kb plasmid pNDM-AeBJ009. However, the conjugation experiment to transfer pNDM-AeBJ009 to Escherichia coli strain J53 was unsuccessful. Whole-genome sequencing found that pNDM-AeBJ009 contains a Tn125 element carrying bla NDM-1 . The ble gene downstream of bla NDM-1 displayed a single-nucleotide polymorphism compared to its homologue on plasmid pM131_NDM1. BLAST analysis using the Comprehensive Antibiotic Resistance Database identified no gene polymorphisms with 100% identity to our ble variant. Conclusion The A. towneri strain AeBJ009 exhibiting an extended spectrum of antibiotic resistance was isolated from hospital sewage and may potentially exacerbate the risk of MDR bacterial infections. The prevention of nosocomial infections due to drug-resistant bacteria will require enhanced monitoring and control of MDR pathogens in environmental reservoirs.
Collapse
Affiliation(s)
- Kaiying Wang
- College of Military Medicine, Academy of Military Sciences, Beijing, People's Republic of China.,Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Peihan Li
- College of Military Medicine, Academy of Military Sciences, Beijing, People's Republic of China.,Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Jinhui Li
- Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Xiaofeng Hu
- Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Yanfeng Lin
- College of Military Medicine, Academy of Military Sciences, Beijing, People's Republic of China.,Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Lang Yang
- College of Military Medicine, Academy of Military Sciences, Beijing, People's Republic of China.,Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Shaofu Qiu
- Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Hui Ma
- The Sixth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Peng Li
- Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| | - Hongbin Song
- Center for Disease Control and Prevention of PLA, Beijing, People's Republic of China
| |
Collapse
|
9
|
Tavares LCB, Cunha MPV, de Vasconcellos FM, Bertani AMDJ, de Barcellos TAF, Bueno MS, Santos CA, Sant'Ana DA, Ferreira AM, Mondelli AL, Montelli AC, Sadatsune T, Sacchi CT, Gonçalves CR, Tiba-Casas MR, Camargo CH. Genomic and Clinical Characterization of IMP-1-Producing Multidrug-Resistant Acinetobacter bereziniae Isolates from Bloodstream Infections in a Brazilian Tertiary Hospital. Microb Drug Resist 2020; 26:1399-1404. [PMID: 32155381 DOI: 10.1089/mdr.2019.0210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acinetobacter baumannii is the main species of the Acinetobacter genus; however, non-baumannii Acinetobacter (NBA) species causing infections have been described for the past years, as well as antimicrobial resistance. In this study, we describe the occurrence of two multidrug-resistant (MDR) IMP-1-producing Acinetobacter bereziniae isolates recovered from bloodstream infections in different patients but in the same intensive care unit among 134 carbapenem-resistant Acinetobacter screened. Antimicrobial susceptibility testing revealed resistance to carbapenems, extended spectrum, and antipseudomonad cephalosporins, amikacin, and trimethoprim-sulfamethoxazole. Both A. bereziniae isolates shared the same ApaI-pulsed-field gel electrophoresis (PFGE) pattern. Whole-genome sequencing of both isolates revealed that blaIMP-1 was embedded into an In86 Class I integron carrying also sul1, aac(6')-31, and aadA genes. A new sequence type (ST1309 Pasteur) was deposited. The virulence genes lpxC and ompA, seen in A. baumannii, were detected in the A. bereziniae strains. Recognition of A. bereziniae causing invasive MDR infection underscores the role of NBA species as human pathogens especially in at-risk patients.
Collapse
Affiliation(s)
- Lais Calissi Brisolla Tavares
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Thays Almeida Franco de Barcellos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana Sardinha Bueno
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Terue Sadatsune
- Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil
| | | | | | | | - Carlos Henrique Camargo
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, Brazil.,Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Brovedan M, Repizo GD, Marchiaro P, Viale AM, Limansky A. Characterization of the diverse plasmid pool harbored by the blaNDM-1-containing Acinetobacter bereziniae HPC229 clinical strain. PLoS One 2019; 14:e0220584. [PMID: 31743332 PMCID: PMC6863613 DOI: 10.1371/journal.pone.0220584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter bereziniae is an environmental microorganism with increasing clinical incidence, and may thus provide a model for a bacterial species bridging the gap between the environment and the clinical setting. A. bereziniae plasmids have been poorly studied, and their characterization could offer clues on the causes underlying the leap between these two different habitats. Here we characterized the whole plasmid content of A. bereziniae HPC229, a clinical strain previously reported to harbor a 44-kbp plasmid, pNDM229, conferring carbapenem and aminoglycoside resistance. We identified five extra plasmids in HPC229 ranging from 114 to 1.3 kbp, including pAbe229-114 (114 kbp) encoding a MOBP111 relaxase and carrying heavy metal resistance, a bacteriophage defense BREX system and four different toxin-antitoxin (TA) systems. Two other replicons, pAbe229-15 (15.4 kbp) and pAbe229-9 (9.1 kbp), both encoding MOBQ1 relaxases and also carrying TA systems, were found. The three latter plasmids contained Acinetobacter Rep_3 superfamily replication initiator protein genes, and functional analysis of their transfer regions revealed the mobilizable nature of them. HPC229 also harbors two smaller plasmids, pAbe229-4 (4.4 kbp) and pAbe229-1 (1.3 kbp), the former bearing a ColE1-type replicon and a TA system, and the latter lacking known replication functions. Comparative sequence analyses against deposited Acinetobacter genomes indicated that the above five HPC229 plasmids were unique, although some regions were also present in other of these genomes. The transfer, replication, and adaptive modules in pAbe229-15, and the stability module in pAbe229-9, were bordered by sites potentially recognized by XerC/XerD site-specific tyrosine recombinases, thus suggesting a potential mechanism for their acquisition. The presence of Rep_3 and ColE1-based replication modules, different mob genes, distinct adaptive functions including resistance to heavy metal and other environmental stressors, as well as antimicrobial resistance genes, and a high content of XerC/XerD sites among HPC229 plasmids provide evidence of substantial links with bacterial species derived from both environmental and clinical habitats.
Collapse
Affiliation(s)
- Marco Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Guillermo D. Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Patricia Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro M. Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (AMV); (AL)
| | - Adriana Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (AMV); (AL)
| |
Collapse
|
11
|
Bello-López E, Castro-Jaimes S, Cevallos MÁ, Rocha-Gracia RDC, Castañeda-Lucio M, Sáenz Y, Torres C, Gutiérrez-Cazares Z, Martínez-Laguna Y, Lozano-Zarain P. Resistome and a Novel blaNDM-1-Harboring Plasmid of an Acinetobacter haemolyticus Strain from a Children's Hospital in Puebla, Mexico. Microb Drug Resist 2019; 25:1023-1031. [PMID: 31335270 PMCID: PMC6743090 DOI: 10.1089/mdr.2019.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter calcoaceticus-baumannii complex isolates have been frequently associated with hospital and community infections, with A. baumannii being the most common. Other Acinetobacter spp. not belonging to this complex also cause infections in hospital settings, and the incidence has increased over the past few years. Some species of the Acinetobacter genus possess a great diversity of antibiotic resistance mechanisms, such as efflux pumps, porins, and resistance genes that can be acquired and disseminated by mobilizable genetic elements. By means of whole-genome sequencing, we describe in the clinical Acinetobacter haemolyticus strain AN54 different mechanisms of resistance that involve blaOXA-265, blaNDM-1, aphA6, aac(6’)-Ig, and a resistance-nodulation-cell division-type efflux pump. This strain carries six plasmids, of which the plasmid pAhaeAN54e contains blaNDM-1 in a Tn125-like transposon that is truncated at the 3′ end. This strain also has an insertion sequence IS91 and seven genes encoding hypothetical proteins. The pAhaeAN54e plasmid is nontypable and different from other plasmids carrying blaNDM-1 that have been reported in Mexico and other countries. The presence of these kinds of plasmids in an opportunistic pathogen such as A. haemolyticus highlights the role that these plasmids play in the dissemination of antibiotic resistance genes, especially against carbapenems, in Mexican hospitals.
Collapse
Affiliation(s)
- Elena Bello-López
- Centro de Investigaciones de Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Semiramis Castro-Jaimes
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Miguel Ángel Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Rosa Del Carmen Rocha-Gracia
- Centro de Investigaciones de Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Miguel Castañeda-Lucio
- Centro de Investigaciones de Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, España
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, España
| | | | - Ygnacio Martínez-Laguna
- Centro de Investigaciones de Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Patricia Lozano-Zarain
- Centro de Investigaciones de Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
12
|
Brasiliense D, Cayô R, Streling AP, Nodari CS, Barata RR, Lemos PS, Massafra JM, Correa Y, Magalhães I, Gales AC, Sodré R. Diversity of metallo-β-lactamase-encoding genes found in distinct species of Acinetobacter isolated from the Brazilian Amazon Region. Mem Inst Oswaldo Cruz 2019; 114:e190020. [PMID: 31166421 PMCID: PMC6543903 DOI: 10.1590/0074-02760190020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/29/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The multidrug resistance (MDR) phenotype is frequently observed in
Acinetobacter baumannii, the most clinically relevant
pathogenic species of its genus; recently, other species belonging to the
A. calcoaceticus-A. baumannii complex have emerged as
important MDR nosocomial pathogens. OBJECTIVES The present study aimed to verify the occurrence of metallo-β-lactamase
genes among distinct Acinetobacter species in a hospital
located in the Brazilian Amazon Region. METHODS Antimicrobial susceptibility profiles were determined by broth
microdilution. The genetic relationships among these isolates were assessed
by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing
(MLST). Pyrosequencing reads of plasmids carrying the blaNDM-1 gene were generated using the Ion Torrent™ platform
sequencing. FINDINGS A total of six isolates carried blaNDM-1: A. baumannii (n = 2), A.
nosocomialis (n = 3), and A. pittii (n = 1);
three carried blaIMP-1: A. baumannii, A.
nosocomialis, and A. bereziniae. Resistance to
colistin was observed for an NDM-1-producing A.
nosocomialis isolate. Diverse PFGE patterns and sequence types
were found among A. nosocomialis and A.
baumannii isolates. The blaNDM-1 sequence was inserted in a Tn125
transposon, while the blaIMP-1 was found as a gene cassette of the class 1 integron
In86. MAIN CONCLUSIONS To the best of our knowledge, this is the first report describing the
dissemination of blaNDM-1 among distinct Acinetobacter species
recovered from the same hospital in South America.
Collapse
Affiliation(s)
- Danielle Brasiliense
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia, Ananindeua, PA, Brasil
| | - Rodrigo Cayô
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Setor de Biologia Molecular, Microbiologia e Imunologia, Diadema, SP, Brasil
| | - Ana Paula Streling
- Universidade Federal de São Paulo, Departamento de Medicina, Escola Paulista de Medicina, Laboratório Alerta, Disciplina de Infectologia, São Paulo, SP, Brasil
| | - Carolina S Nodari
- Universidade Federal de São Paulo, Departamento de Medicina, Escola Paulista de Medicina, Laboratório Alerta, Disciplina de Infectologia, São Paulo, SP, Brasil
| | - Rafael R Barata
- Instituto Evandro Chagas, Centro de Inovação Tecnológica, Ananindeua, PA, Brasil
| | - Poliana S Lemos
- Instituto Evandro Chagas, Centro de Inovação Tecnológica, Ananindeua, PA, Brasil
| | - Janaina M Massafra
- Instituto Evandro Chagas, Centro de Inovação Tecnológica, Ananindeua, PA, Brasil
| | - Yan Correa
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia, Ananindeua, PA, Brasil
| | - Igor Magalhães
- Instituto Evandro Chagas, Seção de Bacteriologia e Micologia, Ananindeua, PA, Brasil
| | - Ana C Gales
- Universidade Federal de São Paulo, Departamento de Medicina, Escola Paulista de Medicina, Laboratório Alerta, Disciplina de Infectologia, São Paulo, SP, Brasil
| | - Roberta Sodré
- Hospital Fundação Santa Casa de Misericórdia do Pará, Belém, PA, Brasil
| |
Collapse
|
13
|
Villacís JE, Bovera M, Romero-Alvarez D, Cornejo F, Albán V, Trueba G, Dorn HF, Reyes JA. NDM-1 carbapenemase in Acinetobacter baumannii sequence type 32 in Ecuador. New Microbes New Infect 2019; 29:100526. [PMID: 30976430 PMCID: PMC6438911 DOI: 10.1016/j.nmni.2019.100526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 01/07/2023] Open
Abstract
Objectives To describe a clinical case of Acinetobacter baumannii sequence type (ST) 32 harbouring a New Delhi metallo-β-lactamase (NDM) in Ecuador. Methods We used multilocus sequence typing (MLST) to confirm the bacterial species and the sequence type of an A. baumannii isolate. We used synergy with the imipenem–EDTA disc method and the carbapenem inactivation method (CIM) to determine carbapenemase production; the presence of a carbapenemase gene was confirmed by PCR amplification and amplicon sequencing. Results Molecular characterization revealed the presence of A. baumannii ST32 harbouring the blaNDM-1 gene in Ecuador. The blaNDM-1 gene was isolated through PCR and amplified from a purified plasmid. Conclusions To the best of our knowledge, this is the first report of A. baumannii ST32 harbouring the blaNDM-1 gene.
Collapse
Affiliation(s)
- J E Villacís
- Carrera de Bioquímica Clínica, Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.,Centro de Referencia Nacional de Resistencia a los Antimicrobianos Instituto Nacional de Investigación en Salud Pública 'Leopoldo Izquieta Pérez', Quito, Ecuador
| | - M Bovera
- Hospital de los Valles, Quito, Ecuador
| | - D Romero-Alvarez
- Department of Ecology & Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - F Cornejo
- Hospital de los Valles, Quito, Ecuador
| | - V Albán
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco, Quito, Pichincha, Ecuador
| | - G Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco, Quito, Pichincha, Ecuador
| | - H F Dorn
- Hospital de los Valles, Quito, Ecuador
| | - J A Reyes
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Pichincha, Ecuador.,Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco, Quito, Pichincha, Ecuador
| |
Collapse
|
14
|
Marquez-Ortiz RA, Haggerty L, Olarte N, Duarte C, Garza-Ramos U, Silva-Sanchez J, Castro BE, Sim EM, Beltran M, Moncada MV, Valderrama A, Castellanos JE, Charles IG, Vanegas N, Escobar-Perez J, Petty NK. Genomic Epidemiology of NDM-1-Encoding Plasmids in Latin American Clinical Isolates Reveals Insights into the Evolution of Multidrug Resistance. Genome Biol Evol 2018; 9:1725-1741. [PMID: 28854628 PMCID: PMC5554438 DOI: 10.1093/gbe/evx115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/21/2022] Open
Abstract
Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-β-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene blaNDM-1 originated in Acinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes.
Collapse
Affiliation(s)
- Ricaurte Alejandro Marquez-Ortiz
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá, D.C., Colombia.,The ithree Institute, University of Technology Sydney, New South Wales, Australia
| | - Leanne Haggerty
- The ithree Institute, University of Technology Sydney, New South Wales, Australia
| | | | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), CISEI, Cuernavaca, Morelos, México
| | - Jesus Silva-Sanchez
- Instituto Nacional de Salud Pública (INSP), CISEI, Cuernavaca, Morelos, México
| | - Betsy E Castro
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá, D.C., Colombia
| | - Eby M Sim
- The ithree Institute, University of Technology Sydney, New South Wales, Australia
| | - Mauricio Beltran
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - María V Moncada
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá, D.C., Colombia
| | | | - Jaime E Castellanos
- Grupo de Patogénesis Infecciosa, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | - Ian G Charles
- The ithree Institute, University of Technology Sydney, New South Wales, Australia
| | - Natasha Vanegas
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá, D.C., Colombia.,The ithree Institute, University of Technology Sydney, New South Wales, Australia
| | - Javier Escobar-Perez
- Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá, D.C., Colombia
| | - Nicola K Petty
- The ithree Institute, University of Technology Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Kwon T, Jung YH, Lee S, Yun MR, Kim W, Kim DW. Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain. Gut Pathog 2016; 8:34. [PMID: 27408624 PMCID: PMC4940875 DOI: 10.1186/s13099-016-0117-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Background Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146. Results The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: blaOXA-1 and blaSHV-28 in the chromosome, blaNDM-1 in plasmid 1, and blaOXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain. Conclusions Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required. Electronic supplementary material The online version of this article (doi:10.1186/s13099-016-0117-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taesoo Kwon
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Young-Hee Jung
- Division of Antimicrobial Resistance, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Sanghyun Lee
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Mi-Ran Yun
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Dae-Won Kim
- Division of Biosafety Evaluation and Control, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| |
Collapse
|
16
|
Draft Genome Sequence of Acinetobacter bereziniae HPC229, a Carbapenem-Resistant Clinical Strain from Argentina Harboring blaNDM-1. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00117-16. [PMID: 26966220 PMCID: PMC4786670 DOI: 10.1128/genomea.00117-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequence of an NDM-1-producing Acinetobacter bereziniae clinical strain, HPC229. This strain harbors both plasmid and chromosomal resistance determinants toward different β-lactams and aminoglycosides as well as several types of multidrug efflux pumps, most likely representing an adaptation strategy for survival under different environments.
Collapse
|