1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Turner J, Muraoka A, Bedenbaugh M, Childress B, Pernot L, Wiencek M, Peterson YK. The Chemical Relationship Among Beta-Lactam Antibiotics and Potential Impacts on Reactivity and Decomposition. Front Microbiol 2022; 13:807955. [PMID: 35401470 PMCID: PMC8988990 DOI: 10.3389/fmicb.2022.807955] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 12/05/2022] Open
Abstract
Beta-lactam antibiotics remain one of the most commonly prescribed drug classes, but they are limited by their propensity to cause hypersensitivity reactions (e.g., from allergy to anaphylaxis) as well as by the emergence of bacteria with a myriad of resistance mechanisms such as β-lactamases. While development efforts continue to focus on overcoming resistance, there are ongoing concerns regarding cross-contamination of β-lactams during manufacturing and compounding of these drugs. Additionally, there is a need to reduce levels of drugs such as β-lactam antibiotics in waste-water to mitigate the risk of environmental exposure. To help address future development of effective remediation chemistries and processes, it is desired to better understand the structural relationship among the most common β-lactams. This study includes the creation of a class-wide structural ordering of the entire β-lactam series, including both United States Food and Drug Association (US-FDA)-approved drugs and experimental therapies. The result is a structural relational map: the "Lactamome," which positions each substance according to architecture and chemical end-group. We utilized a novel method to compare the structural relationships of β-lactam antibiotics among the radial cladogram and describe the positioning with respect to efficacy, resistance to hydrolysis, reported hypersensitivity, and Woodward height. The resulting classification scheme may help with the development of broad-spectrum treatments that reduce the risk of occupational exposure and negative environmental impacts, assist practitioners with avoiding adverse patient reactions, and help direct future drug research.
Collapse
Affiliation(s)
- Jonathan Turner
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
- College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - Alyssa Muraoka
- College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | | | - Blaine Childress
- South Carolina Research Authority, Greenville, SC, United States
| | | | | | - Yuri K. Peterson
- College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
3
|
Loch JI, Imiolczyk B, Sliwiak J, Wantuch A, Bejger M, Gilski M, Jaskolski M. Crystal structures of the elusive Rhizobium etli L-asparaginase reveal a peculiar active site. Nat Commun 2021; 12:6717. [PMID: 34795296 PMCID: PMC8602277 DOI: 10.1038/s41467-021-27105-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/01/2021] [Indexed: 12/04/2022] Open
Abstract
Rhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes an essential L-asparaginase (ReAV) with no sequence homology to known enzymes with this activity. High-resolution crystal structures of ReAV show indeed a structurally distinct, dimeric enzyme, with some resemblance to glutaminases and β-lactamases. However, ReAV has no glutaminase or lactamase activity, and at pH 9 its allosteric asparaginase activity is relatively high, with Km for L-Asn at 4.2 mM and kcat of 438 s-1. The active site of ReAV, deduced from structural comparisons and confirmed by mutagenesis experiments, contains a highly specific Zn2+ binding site without a catalytic role. The extensive active site includes residues with unusual chemical properties. There are two Ser-Lys tandems, all connected through a network of H-bonds to the Zn center, and three tightly bound water molecules near Ser48, which clearly indicate the catalytic nucleophile.
Collapse
Affiliation(s)
- Joanna I Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Joanna Sliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Wantuch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Magdalena Bejger
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland.
| |
Collapse
|
4
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020. [DOI: 10.3390/antibiotics9060325
expr 928323768 + 816400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
5
|
The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:antibiotics9060325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
|
6
|
Cappiello F, Loffredo MR, Del Plato C, Cammarone S, Casciaro B, Quaglio D, Mangoni ML, Botta B, Ghirga F. The Revaluation of Plant-Derived Terpenes to Fight Antibiotic-Resistant Infections. Antibiotics (Basel) 2020; 9:325. [PMID: 32545761 PMCID: PMC7344648 DOI: 10.3390/antibiotics9060325&set/a 898859781+915895989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The discovery of antibiotics has revolutionized the medicine and treatment of microbial infections. However, the current scenario has highlighted the difficulties in marketing new antibiotics and an exponential increase in the appearance of resistant strains. On the other hand, research in the field of drug-discovery has revaluated the potential of natural products as a unique source for new biologically active molecules and scaffolds for the medicinal chemistry. In this review, we first contextualized the worldwide problem of antibiotic resistance and the importance that natural products of plant origin acquire as a source of new lead compounds. We then focused on terpenes and their potential development as antimicrobials, highlighting those studies that showed an activity against conventional antibiotic-resistant strains.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Cristina Del Plato
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
| | - Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: (B.C.); (D.Q.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
- Correspondence: (B.C.); (D.Q.)
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.C.); (M.R.L.); (M.L.M.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.D.P.); (S.C.); (B.B.)
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
7
|
Zhu GX, Jia SJ. Reasonable drug analysis of Listeria monocytogenes meningitis related to mantle cell lymphoma. J Infect Public Health 2019; 12:744-747. [PMID: 31080100 DOI: 10.1016/j.jiph.2019.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/09/2019] [Accepted: 04/14/2019] [Indexed: 11/13/2022] Open
Abstract
We report a case of Listeria meningitis related to mantle cell lymphoma. A clinical pharmacist adjusted repeatedly the patient's anti-infective therapeutic regimen by analyzing the pharmacologic and pharmacokinetic characteristics of antibacterial drugs (such as cefotaxime, meropenem, etc.) due to the patient's repeated fever during hospitalization. To the best of our knowledge, this is the first case of Listeria meningitis related to mantle cell lymphoma treated successfully with meropenem reported in China. This case aims to optimize the anti-infection treatment regimen of Listeria meningitis and to provide a reference for clinicians and clinical pharmacists to use drugs rationally.
Collapse
Affiliation(s)
- Guang-Xuan Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmaceutics, The Third Xiangya Hospital, Central South University, Tongzipo Road #138, Changsha 410013, China
| | - Su-Jie Jia
- Department of Pharmaceutics, The Third Xiangya Hospital, Central South University, Tongzipo Road #138, Changsha 410013, China.
| |
Collapse
|