1
|
Bell TW, Turner RM, Merryman AM, Joseph JJ, Gregory ST, O'Connor M. RsmG methylation of 16S rRNA affects the function of ribosomal protein uS12. Arch Microbiol 2025; 207:146. [PMID: 40377667 DOI: 10.1007/s00203-025-04349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025]
Abstract
The RsmG methyltransferase modifies G527 in bacterial 16S rRNA and its inactivation confers low level streptomycin resistance. In contrast, high level streptomycin resistance typically requires specific alterations in ribosomal protein uS12 or 16S rRNA. Here, we have asked if rsmG inactivation alters the phenotypes of any of a collection of randomly-generated Escherichia coli uS12 mutants. While several uS12 mutants show moderately increased resistance to streptomycin when rsmG is inactivated (MIC = 10-40 µg/ml), a uS12 R85H/rsmG-inactivated strain uniquely displays very high resistance (MIC > 1,024 µg/ml). Additional genetic selections showed that rsmG null mutations combined with specific alterations in uS12 can generate streptomycin-dependence, or pseudo-dependence, in addition to resistance. Moreover, growth of several of these mutants on high concentrations of streptomycin is conditional on rsmG inactivation. Thus, loss of m7G527 methylation affects the streptomycin phenotypes of distinct uS12 mutants and identifies an additional route to high-level streptomycin resistance in bacteria.
Collapse
Affiliation(s)
- Trevor W Bell
- Division of Biology and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rm 306 Spencer Hall5007 Rockhill Rd., Kansas City, MO, 64110, USA
| | - Rowan M Turner
- Division of Biology and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rm 306 Spencer Hall5007 Rockhill Rd., Kansas City, MO, 64110, USA
| | - Amanda M Merryman
- Division of Biology and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rm 306 Spencer Hall5007 Rockhill Rd., Kansas City, MO, 64110, USA
- Metropolitan Community College, Longview Campus, 500 SW Longview Rd., Lee's Summit, MO, 64081, USA
| | - Juliana J Joseph
- Division of Biology and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rm 306 Spencer Hall5007 Rockhill Rd., Kansas City, MO, 64110, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Michael O'Connor
- Division of Biology and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rm 306 Spencer Hall5007 Rockhill Rd., Kansas City, MO, 64110, USA.
| |
Collapse
|
2
|
Saha S, Kanaujia SP. Structural and functional characterization of archaeal DIMT1 unveils distinct protein dynamics essential for efficient catalysis. Structure 2024; 32:1760-1775.e7. [PMID: 39146930 DOI: 10.1016/j.str.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Dimethyladenosine transferase 1 (DIMT1), an ortholog of bacterial KsgA is a conserved protein that assists in ribosome biogenesis by modifying two successive adenosine bases near the 3' end of small subunit (SSU) rRNA. Although KsgA/DIMT1 proteins have been characterized in bacteria and eukaryotes, they are yet unexplored in archaea. Also, their dynamics are not well understood. Here, we structurally and functionally characterized the apo and holo forms of archaeal DIMT1 from Pyrococcus horikoshii. Wild-type protein and mutants were analyzed to capture different transition states, including open, closed, and intermediate states. This study reports a unique inter-domain movement that is needed for substrate (RNA) positioning in the catalytic pocket, and is only observed in the presence of the cognate cofactors S-adenosyl-L-methionine (SAM) or S-adenosyl-L-homocysteine (SAH). The binding of the inhibitor sinefungine, an analog of SAM or SAH, to archaeal DIMT1 blocks the catalytic pocket and renders the enzyme inactive.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Millette G, Séguin DL, Isabelle C, Chamberland S, Lucier JF, Rodrigue S, Cantin AM, Malouin F. Staphylococcus aureus Small-Colony Variants from Airways of Adult Cystic Fibrosis Patients as Precursors of Adaptive Antibiotic-Resistant Mutations. Antibiotics (Basel) 2023; 12:1069. [PMID: 37370388 PMCID: PMC10294822 DOI: 10.3390/antibiotics12061069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.
Collapse
Affiliation(s)
- Guillaume Millette
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - David Lalonde Séguin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Charles Isabelle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Suzanne Chamberland
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Jean-François Lucier
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - Sébastien Rodrigue
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| | - André M. Cantin
- Service de Pneumologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (G.M.); (D.L.S.); (C.I.); (S.C.); (J.-F.L.); (S.R.)
| |
Collapse
|
4
|
Liang H, Wang F, Mu R, Huang J, Zhao R, Li X, Yu K, Li B. Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148262. [PMID: 34380279 DOI: 10.1016/j.scitotenv.2021.148262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Although antimicrobial resistance genes (ARGs) in dozens of environments have been well documented, the distribution of ARGs in salt lake ecosystems has been less intensively investigated. In this study, the broad-spectrum ARG profiles, microbial community composition and the comprehensive associations between microbiome and antimicrobial resistome in four salt lakes were investigated using a metagenomic approach. A total of 175 ARG subtypes affiliated with 19 ARG types were detected, and ARGs conferring resistance to multidrug, bacitracin, and macrolide-lincosamide-streptogramin (MLS) accounted for 71.2% of the total ARG abundance. However, the abundance of ARGs significantly decreased with the increasing salinity in the lakes. Both ARG profiles and microbial community structure presented remarkable discrepancies in different lakes, as well as in different sample types. Microbes such as genera Azoarcus, Aeromonas, Pseudomonas, and Kocuria, significantly co-occurred with multiple ARGs, indicating that these bacteria are potential ARG hosts in salt lake ecosystems. Collectively, this work provides new insights into the occurrence and distribution of ARGs in salt lake ecosystems.
Collapse
Affiliation(s)
- Hebin Liang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China
| | - Rong Mu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jin Huang
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Blanco P, Corona F, Martinez JL. Mechanisms and phenotypic consequences of acquisition of tigecycline resistance by Stenotrophomonas maltophilia. J Antimicrob Chemother 2020; 74:3221-3230. [PMID: 31369109 DOI: 10.1093/jac/dkz326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To elucidate the potential mutation-driven mechanisms involved in the acquisition of tigecycline resistance by the opportunistic pathogen Stenotrophomonas maltophilia. The mutational trajectories and their effects on bacterial fitness, as well as cross-resistance and/or collateral susceptibility to other antibiotics, were also addressed. METHODS S. maltophilia populations were submitted to experimental evolution in the presence of increasing concentrations of tigecycline for 30 days. The genetic mechanisms involved in the acquisition of tigecycline resistance were determined by WGS. Resistance was evaluated by performing MIC assays. Fitness of the evolved populations and individual clones was assessed by measurement of the maximum growth rates. RESULTS All the tigecycline-evolved populations attained high-level resistance to tigecycline following different mutational trajectories, yet with some common elements. Among the mechanisms involved in low susceptibility to tigecycline, mutations in the SmeDEF efflux pump negative regulator smeT, changes in proteins involved in the biogenesis of the ribosome and modifications in the LPS biosynthesis pathway seem to play a major role. Besides tigecycline resistance, the evolved populations presented cross-resistance to other antibiotics, such as aztreonam and quinolones, and they were hypersusceptible to fosfomycin, suggesting a possible combination treatment. Further, we found that the selected resistance mechanisms impose a relevant fitness cost when bacteria grow in the absence of antibiotic. CONCLUSIONS Mutational resistance to tigecycline was easily selected during exposure to this antibiotic. However, the fitness cost may compromise the maintenance of S. maltophilia tigecycline-resistant populations in the absence of antibiotic.
Collapse
Affiliation(s)
- Paula Blanco
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
6
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
7
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
8
|
Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets. Trends Mol Med 2020; 26:768-782. [PMID: 32493628 DOI: 10.1016/j.molmed.2020.05.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022]
Abstract
Antibiotic resistance remains a significant threat to modern medicine. Modification of the antibiotic target is a resistance strategy that is increasingly prevalent among pathogens. Examples include resistance to glycopeptide and polymyxin antibiotics that occurs via chemical modification of their molecular targets in the cell envelope. Similarly, many ribosome-targeting antibiotics are impaired by methylation of the rRNA. In these cases, the antibiotic target is subjected to enzymatic modification rather than genetic mutation, and in many instances the resistance enzymes are readily mobilized among pathogens. Understanding the enzymes responsible for these modifications is crucial to combat resistance. Here, we review our current understanding of enzymatic modification of antibiotic targets as well as discuss efforts to combat these resistance mechanisms.
Collapse
|
9
|
Bhujbalrao R, Anand R. Deciphering Determinants in Ribosomal Methyltransferases That Confer Antimicrobial Resistance. J Am Chem Soc 2019; 141:1425-1429. [PMID: 30624914 DOI: 10.1021/jacs.8b10277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Post-translational methylation of rRNA at select positions is a prevalent resistance mechanism adopted by pathogens. In this work, KsgA, a housekeeping ribosomal methyltransferase (rMtase) involved in ribosome biogenesis, was exploited as a model system to delineate the specific targeting determinants that impart substrate specificity to rMtases. With a combination of evolutionary and structure-guided approaches, a set of chimeras were created that altered the targeting specificity of KsgA such that it acted similarly to erythromycin-resistant methyltransferases (Erms), rMtases found in multidrug-resistant pathogens. The results revealed that specific loop embellishments on the basic Rossmann fold are key determinants in the selection of the cognate RNA. Moreover, in vivo studies confirmed that chimeric constructs are competent in imparting macrolide resistance. This work explores the factors that govern the emergence of resistance and paves the way for the design of specific inhibitors useful in reversing antibiotic resistance.
Collapse
Affiliation(s)
- Ruchika Bhujbalrao
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Ruchi Anand
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| |
Collapse
|
10
|
Studies on Aminoglycoside Susceptibility Identify a Novel Function of KsgA To Secure Translational Fidelity during Antibiotic Stress. Antimicrob Agents Chemother 2018; 62:AAC.00853-18. [PMID: 30082289 DOI: 10.1128/aac.00853-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has become a global crisis. Studies on the mechanism of bacterial tolerance to antibiotics will not only increase our conceptual understanding of bacterial death but also provide potential targets for novel inhibitors. We screened a mutant library containing a full set of in-frame deletion mutants of Escherichia coli K-12 and identified 140 genes that possibly contribute to gentamicin tolerance. The deletion of ksgA increased the inhibition and killing potency against mid-log-phase bacteria by aminoglycosides. Initially identified as a 16S rRNA methyltransferase, KsgA also has additional functions as a ribosomal biogenesis factor and a DNA glycosylase. We found that the methyltransferase activity of KsgA is responsible for the tolerance, as demonstrated by a site-directed mutagenesis analysis. In contrast to the mechanism for cold sensitivity, the decreased tolerance to aminoglycoside is not related to the failure of ribosomal biogenesis. Furthermore, the DNA glycosylase activity of KsgA contributes minimally to kanamycin tolerance. Importantly, we discovered that KsgA secures protein translational fidelity upon kanamycin killing, in contrast to its role during cold stress and kasugamycin treatment. The results suggest that the compromise in protein translational fidelity in the absence of KsgA is the root cause of an increased sensitivity to a bactericidal aminoglycoside. In addition, KsgA in the pathogenic Acinetobacter baumannii contributes not only to the tolerance against aminoglycoside killing but also to virulence in the host, warranting its potential application as a target for inhibitors that potentiate aminoglycoside therapeutic killing as well as disarm bacterial virulence simultaneously.
Collapse
|
11
|
Chiok KL, Paul NC, Adekanmbi EO, Srivastava SK, Shah DH. Dimethyl adenosine transferase (KsgA) contributes to cell-envelope fitness in Salmonella Enteritidis. Microbiol Res 2018; 216:108-119. [PMID: 30269850 DOI: 10.1016/j.micres.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023]
Abstract
We previously reported that inactivation of a universally conserved dimethyl adenosine transferase (KsgA) attenuates virulence and increases sensitivity to oxidative and osmotic stress in Salmonella Enteritidis. Here, we show a role of KsgA in cell-envelope fitness as a potential mechanism underlying these phenotypes in Salmonella. We assessed structural integrity of the cell-envelope by transmission electron microscopy, permeability barrier function by determining intracellular accumulation of ethidium bromide and electrophysical properties by dielectrophoresis, an electrokinetic tool, in wild-type and ksgA knock-out mutants of S. Enteritidis. Deletion of ksgA resulted in disruption of the structural integrity, permeability barrier and distorted electrophysical properties of the cell-envelope. The cell-envelope fitness defects were alleviated by expression of wild-type KsgA (WT-ksgA) but not by its catalytically inactive form (ksgAE66A), suggesting that the dimethyl transferase activity of KsgA is important for cell-envelope fitness in S. Enteritidis. Upon expression of WT-ksgA and ksgAE66A in inherently permeable E. coli cells, the former strengthened and the latter weakened the permeability barrier, suggesting that KsgA also contributes to the cell-envelope fitness in E. coli. Lastly, expression of ksgAE66A exacerbated the cell-envelope fitness defects, resulting in impaired S. Enteritidis interactions with human intestinal epithelial cells, and human and avian phagocytes. This study shows that KsgA contributes to cell-envelope fitness and opens new avenues to modulate cell-envelopes via use of KsgA-antagonists.
Collapse
Affiliation(s)
- Kim Lam Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Ezekiel O Adekanmbi
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, Idaho 83844-1021, USA
| | - Soumya K Srivastava
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, Idaho 83844-1021, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Paul Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
12
|
Seistrup KH, Rose S, Birkedal U, Nielsen H, Huber H, Douthwaite S. Bypassing rRNA methylation by RsmA/Dim1during ribosome maturation in the hyperthermophilic archaeon Nanoarchaeum equitans. Nucleic Acids Res 2017; 45:2007-2015. [PMID: 28204608 PMCID: PMC5389701 DOI: 10.1093/nar/gkw839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/10/2016] [Indexed: 12/16/2022] Open
Abstract
In all free-living organisms a late-stage checkpoint in the biogenesis of the small ribosomal subunit involves rRNA modification by an RsmA/Dim1 methyltransferase. The hyperthermophilic archaeon Nanoarchaeum equitans, whose existence is confined to the surface of a second archaeon, Ignicoccus hospitalis, lacks an RsmA/Dim1 homolog. We demonstrate here that the I. hospitalis host possesses the homolog Igni_1059, which dimethylates the N6-positions of two invariant adenosines within helix 45 of 16S rRNA in a manner identical to other RsmA/Dim1 enzymes. However, Igni_1059 is not transferred from I. hospitalis to N. equitans across their fused cell membrane structures and the corresponding nucleotides in N. equitans 16S rRNA remain unmethylated. An alternative mechanism for ribosomal subunit maturation in N. equitans is suggested by sRNA interactions that span the redundant RsmA/Dim1 site to introduce 2΄-O-ribose methylations within helices 44 and 45 of the rRNA.
Collapse
Affiliation(s)
- Kenneth H. Seistrup
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Simon Rose
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulf Birkedal
- Department of Cellular & Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Henrik Nielsen
- Department of Cellular & Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Harald Huber
- Lehrstuhl für Mikrobiologie und Archaeenzentrum Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Stephen Douthwaite
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
13
|
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 2016; 70:25-40. [PMID: 27381522 DOI: 10.1038/ja.2016.82] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/22/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
As bacteria and fungi have been found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often silent under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. This review addresses current progress in the activation of these pathways, describing methods for activating silent genes. It especially focuses on genetic manipulation of transcription and translation (ribosome engineering), the utilization of elicitors, metabolism remodeling and co-cultivation. In particular, the principles and technical points of ribosome engineering and the significance of S-adenosylmethionine in bacterial physiology, especially secondary metabolism, are described in detail.
Collapse
|
14
|
DiChiara JM, Liu B, Figaro S, Condon C, Bechhofer DH. Mapping of internal monophosphate 5' ends of Bacillus subtilis messenger RNAs and ribosomal RNAs in wild-type and ribonuclease-mutant strains. Nucleic Acids Res 2016; 44:3373-89. [PMID: 26883633 PMCID: PMC4838370 DOI: 10.1093/nar/gkw073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
The recent findings that the narrow-specificity endoribonuclease RNase III and the 5′ exonuclease RNase J1 are not essential in the Gram-positive model organism, Bacillus subtilis, facilitated a global analysis of internal 5′ ends that are generated or acted upon by these enzymes. An RNA-Seq protocol known as PARE (Parallel Analysis of RNA Ends) was used to capture 5′ monophosphorylated RNA ends in ribonuclease wild-type and mutant strains. Comparison of PARE peaks in strains with RNase III present or absent showed that, in addition to its well-known role in ribosomal (rRNA) processing, many coding sequences and intergenic regions appeared to be direct targets of RNase III. These target sites were, in most cases, not associated with a known antisense RNA. The PARE analysis also revealed an accumulation of 3′-proximal peaks that correlated with the absence of RNase J1, confirming the importance of RNase J1 in degrading RNA fragments that contain the transcription terminator structure. A significant result from the PARE analysis was the discovery of an endonuclease cleavage just 2 nts downstream of the 16S rRNA 3′ end. This latter observation begins to answer, at least for B. subtilis, a long-standing question on the exonucleolytic versus endonucleolytic nature of 16S rRNA maturation.
Collapse
Affiliation(s)
- Jeanne M DiChiara
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Bo Liu
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Sabine Figaro
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Ciarán Condon
- CNRS UMR8261 (affiliated with Université Paris Diderot, Sorbonne Paris Cité), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - David H Bechhofer
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
15
|
16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus. Biochimie 2015; 119:166-74. [PMID: 26545800 DOI: 10.1016/j.biochi.2015.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/28/2015] [Indexed: 11/21/2022]
Abstract
We previously reported that the rRNA methyltransferases RsmI and RsmH, which are responsible for cytidine dimethylation at position 1402 of 16S rRNA in the decoding center of the ribosome, contribute to Staphylococcus aureus virulence. Here we evaluated other 16S rRNA methyltransferases, including KsgA (RsmA), RsmB/F, RsmC, RsmD, RsmE, and RsmG. Knockout of KsgA, which methylates two adjacent adenosines at positions 1518 and 1519 of 16S rRNA in the intersubunit bridge of the ribosome, attenuated the S. aureus killing ability against silkworms. The ksgA knockout strain was sensitive to oxidative stress and had a lower survival rate in murine macrophages than the parent strain. The ksgA knockout strain exhibited decreased translational fidelity in oxidative stress conditions. Administration of N-acetyl-l-cysteine, a free-radical scavenger, restored the killing ability of the ksgA knockout strain against silkworms. These findings suggest that the methyl-modifications of 16S rRNA by KsgA contribute to maintain ribosome function under oxidative conditions and thus to S. aureus virulence.
Collapse
|
16
|
Mosquera-Rendón J, Cárdenas-Brito S, Pineda JD, Corredor M, Benítez-Páez A. Evolutionary and sequence-based relationships in bacterial AdoMet-dependent non-coding RNA methyltransferases. BMC Res Notes 2014; 7:440. [PMID: 25012753 PMCID: PMC4119055 DOI: 10.1186/1756-0500-7-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022] Open
Abstract
Background RNA post-transcriptional modification is an exciting field of research that has evidenced this editing process as a sophisticated epigenetic mechanism to fine tune the ribosome function and to control gene expression. Although tRNA modifications seem to be more relevant for the ribosome function and cell physiology as a whole, some rRNA modifications have also been seen to play pivotal roles, essentially those located in central ribosome regions. RNA methylation at nucleobases and ribose moieties of nucleotides appear to frequently modulate its chemistry and structure. RNA methyltransferases comprise a superfamily of highly specialized enzymes that accomplish a wide variety of modifications. These enzymes exhibit a poor degree of sequence similarity in spite of using a common reaction cofactor and modifying the same substrate type. Results Relationships and lineages of RNA methyltransferases have been extensively discussed, but no consensus has been reached. To shed light on this topic, we performed amino acid and codon-based sequence analyses to determine phylogenetic relationships and molecular evolution. We found that most Class I RNA MTases are evolutionarily related to protein and cofactor/vitamin biosynthesis methyltransferases. Additionally, we found that at least nine lineages explain the diversity of RNA MTases. We evidenced that RNA methyltransferases have high content of polar and positively charged amino acid, which coincides with the electrochemistry of their substrates. Conclusions After studying almost 12,000 bacterial genomes and 2,000 patho-pangenomes, we revealed that molecular evolution of Class I methyltransferases matches the different rates of synonymous and non-synonymous substitutions along the coding region. Consequently, evolution on Class I methyltransferases selects against amino acid changes affecting the structure conformation.
Collapse
Affiliation(s)
| | | | | | | | - Alfonso Benítez-Páez
- Bioinformatics Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología - CIDBIO, 111221 Bogotá, D,C, Colombia.
| |
Collapse
|
17
|
Dimethyl adenosine transferase (KsgA) deficiency in Salmonella enterica Serovar Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens. Appl Environ Microbiol 2013; 79:7857-66. [PMID: 24123731 DOI: 10.1128/aem.03040-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethyl adenosine transferase (KsgA) performs diverse roles in bacteria, including ribosomal maturation and DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that a ksgA mutation in Salmonella enterica serovar Enteritidis results in impaired invasiveness in human and avian epithelial cells. In this study, we tested the virulence of a ksgA mutant (the ksgA::Tn5 mutant) of S. Enteritidis in orally challenged 1-day-old chickens. The ksgA::Tn5 mutant showed significantly reduced intestinal colonization and organ invasiveness in chickens compared to those of the wild-type (WT) parent. Phenotype microarray (PM) was employed to compare the ksgA::Tn5 mutant and its isogenic wild-type strain for 920 phenotypes at 28°C, 37°C, and 42°C. At chicken body temperature (42°C), the ksgA::Tn5 mutant showed significantly reduced respiratory activity with respect to a number of carbon, nitrogen, phosphate, sulfur, and peptide nitrogen nutrients. The greatest differences were observed in the osmolyte panel at concentrations of ≥6% NaCl at 37°C and 42°C. In contrast, no major differences were observed at 28°C. In independent growth assays, the ksgA::Tn5 mutant displayed a severe growth defect in high-osmolarity (6.5% NaCl) conditions in nutrient-rich (LB) and nutrient-limiting (M9 minimum salts) media at 42°C. Moreover, the ksgA::Tn5 mutant showed significantly reduced tolerance to oxidative stress, but its survival within macrophages was not impaired. Unlike Escherichia coli, the ksgA::Tn5 mutant did not display a cold-sensitivity phenotype; however, it showed resistance to kasugamycin and increased susceptibility to chloramphenicol. To the best of our knowledge, this is the first report showing the role of ksgA in S. Enteritidis virulence in chickens, tolerance to high osmolarity, and altered susceptibility to kasugamycin and chloramphenicol.
Collapse
|
18
|
Phunpruch S, Warit S, Suksamran R, Billamas P, Jaitrong S, Palittapongarnpim P, Prammananan T. A role for 16S rRNA dimethyltransferase (ksgA) in intrinsic clarithromycin resistance in Mycobacterium tuberculosis. Int J Antimicrob Agents 2013; 41:548-51. [DOI: 10.1016/j.ijantimicag.2013.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 11/28/2022]
|
19
|
Hashimoto K, Ogawa W, Nishioka T, Tsuchiya T, Kuroda T. Functionally cloned pdrM from Streptococcus pneumoniae encodes a Na(+) coupled multidrug efflux pump. PLoS One 2013; 8:e59525. [PMID: 23555691 PMCID: PMC3608713 DOI: 10.1371/journal.pone.0059525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/15/2013] [Indexed: 11/29/2022] Open
Abstract
Multidrug efflux pumps play an important role as a self-defense system in bacteria. Bacterial multidrug efflux pumps are classified into five families based on structure and coupling energy: resistance−nodulation−cell division (RND), small multidrug resistance (SMR), major facilitator (MF), ATP binding cassette (ABC), and multidrug and toxic compounds extrusion (MATE). We cloned a gene encoding a MATE-type multidrug efflux pump from Streptococcus pneumoniae R6, and designated it pdrM. PdrM showed sequence similarity with NorM from Vibrio parahaemolyticus, YdhE from Escherichia coli, and other bacterial MATE-type multidrug efflux pumps. Heterologous expression of PdrM let to elevated resistance to several antibacterial agents, norfloxacin, acriflavine, and 4′,6-diamidino-2-phenylindole (DAPI) in E. coli KAM32 cells. PdrM effluxes acriflavine and DAPI in a Na+- or Li+-dependent manner. Moreover, Na+ efflux via PdrM was observed when acriflavine was added to Na+-loaded cells expressing pdrM. Therefore, we conclude that PdrM is a Na+/drug antiporter in S. pneumoniae. In addition to pdrM, we found another two genes, spr1756 and spr1877,that met the criteria of MATE-type by searching the S. pneumoniae genome database. However, cloned spr1756 and spr1877 did not elevate the MIC of any of the investigated drugs. mRNA expression of spr1756, spr1877, and pdrM was detected in S. pneumoniae R6 under laboratory growth conditions. Therefore, spr1756 and spr1877 are supposed to play physiological roles in this growth condition, but they may be unrelated to drug resistance.
Collapse
Affiliation(s)
- Kohei Hashimoto
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Wakano Ogawa
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
- * E-mail:
| | - Toshihiro Nishioka
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Tomofusa Tsuchiya
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| | - Teruo Kuroda
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan
| |
Collapse
|
20
|
Ochi K, Hosaka T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl Microbiol Biotechnol 2012; 97:87-98. [PMID: 23143535 PMCID: PMC3536979 DOI: 10.1007/s00253-012-4551-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
Abstract
Genome sequencing of Streptomyces, myxobacteria, and fungi showed that although each strain contains genes that encode the enzymes to synthesize a plethora of potential secondary metabolites, only a fraction are expressed during fermentation. Interest has therefore grown in the activation of these cryptic pathways. We review current progress on this topic, describing concepts for activating silent genes, utilization of “natural” mutant-type RNA polymerases and rare earth elements, and the applicability of ribosome engineering to myxobacteria and fungi, the microbial groups known as excellent searching sources, as well as actinomycetes, for secondary metabolites.
Collapse
Affiliation(s)
- Kozo Ochi
- Department of Life Science, Hiroshima Institute of Technology, Miyake 2-1-1, Saeki-ku, Hiroshima, 731-5193, Japan.
| | | |
Collapse
|
21
|
O'Farrell HC, Rife JP. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis. BMC Microbiol 2012; 12:244. [PMID: 23095113 PMCID: PMC3534330 DOI: 10.1186/1471-2180-12-244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The KsgA methyltransferase has been conserved throughout evolution, methylating two adenosines in the small subunit rRNA in all three domains of life as well as in eukaryotic organelles that contain ribosomes. Understanding of KsgA's important role in ribosome biogenesis has been recently expanded in Escherichia coli; these studies help explain why KsgA is so highly conserved and also suggest KsgA's potential as an antimicrobial drug target. RESULTS We have analyzed KsgA's contribution to ribosome biogenesis and cell growth in Staphylococcus aureus. We found that deletion of ksgA in S. aureus led to a cold-sensitive growth phenotype, although KsgA was not as critical for ribosome biogenesis as it was shown to be in E. coli. Additionally, the ksgA knockout strain showed an increased sensitivity to aminoglycoside antibiotics. Overexpression of a catalytically inactive KsgA mutant was deleterious in the knockout strain but not the wild-type strain; this negative phenotype disappeared at low temperature. CONCLUSIONS This work extends the study of KsgA, allowing comparison of this aspect of ribosome biogenesis between a Gram-negative and a Gram-positive organism. Our results in S. aureus are in contrast to results previously described in E. coli, where the catalytically inactive protein showed a negative phenotype in the presence or absence of endogenous KsgA.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Physiology and Molecular Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
22
|
The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria. Appl Environ Microbiol 2012; 78:5555-64. [PMID: 22660700 DOI: 10.1128/aem.01155-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kasugamycin (KSM), a unique aminoglycoside antibiotic, has been used in agriculture for many years to control not only rice blast caused by the fungus Magnaporthe grisea but also rice bacterial grain and seedling rot or rice bacterial brown stripe caused by Burkholderia glumae or Acidovorax avenae subsp. avenae, respectively. Since both bacterial pathogens are seed-borne and cause serious injury to rice seedlings, the emergence of KSM-resistant B. glumae and A. avenae isolates highlights the urgent need to understand the mechanism of resistance to KSM. Here, we identified a novel gene, aac(2')-IIa, encoding a KSM 2'-N-acetyltransferase from both KSM-resistant pathogens but not from KSM-sensitive bacteria. AAC(2')-IIa inactivates KSM, although it reveals no cross-resistance to other aminoglycosides. The aac(2')-IIa gene from B. glumae strain 5091 was identified within the IncP genomic island inserted into the bacterial chromosome, indicating the acquisition of this gene by horizontal gene transfer. Although excision activity of the IncP island and conjugational gene transfer was not detected under the conditions tested, circular intermediates containing the aac(2')-IIa gene were detected. These results indicate that the aac(2')-IIa gene had been integrated into the IncP island of a donor bacterial species. Molecular detection of the aac(2')-IIa gene could distinguish whether isolates are resistant or susceptible to KSM. This may contribute to the production of uninfected rice seeds and lead to the effective control of these pathogens by KSM.
Collapse
|
23
|
Benítez-Páez A, Villarroya M, Armengod ME. Regulation of expression and catalytic activity of Escherichia coli RsmG methyltransferase. RNA (NEW YORK, N.Y.) 2012; 18:795-806. [PMID: 22337945 PMCID: PMC3312566 DOI: 10.1261/rna.029868.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
RsmG is an AdoMet-dependent methyltransferase responsible for the synthesis of m(7)G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m(7)G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Here, we explore the mechanisms controlling RsmG expression and activity, which may somehow respond to the demand set by the amount of rRNA. We confirm that rsmG is the second member in a bicistronic operon and demonstrate that rsmG also has its own promoter, which appears, in actively growing cells, as a control device to offset both the relatively low stability of RsmG and inhibition of the operon promoter. RsmG levels decrease under conditions that down-regulate rRNA synthesis. However, coordination between rRNA and RsmG expression does not seem to occur at the level of transcription initiation. Instead, it might depend on the activity of an inverted repeated region, located between the rsmG promoter and ribosome binding site, which we show to work as a weak transcriptional terminator. To gain insights into the enzymatic mechanism of RsmG, highly conserved residues were mutated and the abilities of the resulting proteins to confer streptomycin resistance, to modify rRNA, and to bind AdoMet were explored. Our data demonstrate for the first time the critical importance of some residues located in the active site of Escherichia coli RsmG for the m(7)G modification process and suggest a role for them in rRNA binding and catalysis.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Bioinformatic Analysis Group–GABi, Centro de Investigación y Desarrollo en Biotecnología, Bogotá D.C. 111221, Colombia
| | - Magda Villarroya
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
24
|
Sergiev PV, Golovina AY, Sergeeva OV, Osterman IA, Nesterchuk MV, Bogdanov AA, Dontsova OA. How much can we learn about the function of bacterial rRNA modification by mining large-scale experimental datasets? Nucleic Acids Res 2012; 40:5694-705. [PMID: 22411911 PMCID: PMC3384335 DOI: 10.1093/nar/gks219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modification of ribosomal RNA is ubiquitous among living organisms. Its functional role is well established for only a limited number of modified nucleotides. There are examples of rRNA modification involvement in the gene expression regulation in the cell. There is a need for large data set analysis in the search for potential functional partners for rRNA modification. In this study, we extracted phylogenetic profile, genome neighbourhood, co-expression and phenotype profile and co-purification data regarding Escherichia coli rRNA modification enzymes from public databases. Results were visualized as graphs using Cytoscape and analysed. Majority linked genes/proteins belong to translation apparatus. Among co-purification partners of rRNA modification enzymes are several candidates for experimental validation. Phylogenetic profiling revealed links of pseudouridine synthetases with RF2, RsmH with translation factors IF2, RF1 and LepA and RlmM with RdgC. Genome neighbourhood connections revealed several putative functionally linked genes, e.g. rlmH with genes coding for cell wall biosynthetic proteins and others. Comparative analysis of expression profiles (Gene Expression Omnibus) revealed two main associations, a group of genes expressed during fast growth and association of rrmJ with heat shock genes. This study might be used as a roadmap for further experimental verification of predicted functional interactions.
Collapse
Affiliation(s)
- Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lau SK, Wong GK, Tsang AK, Teng JL, Fan RY, Tse H, Yuen KY, Woo PC. Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci 2011; 1:17. [PMID: 21711902 PMCID: PMC3125207 DOI: 10.1186/2045-3701-1-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/19/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements. RESULTS For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases. CONCLUSIONS The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.
Collapse
Affiliation(s)
- Susanna Kp Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Gilman Km Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Alan Kl Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jade Ll Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rachel Yy Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Herman Tse
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Patrick Cy Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Binet R, Maurelli AT. The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness. BMC Microbiol 2009; 9:279. [PMID: 20043826 PMCID: PMC2807437 DOI: 10.1186/1471-2180-9-279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 12/31/2009] [Indexed: 12/22/2022] Open
Abstract
Background rRNA adenine dimethyltransferases, represented by the Escherichia coli KsgA protein, are highly conserved phylogenetically and are generally not essential for growth. They are responsible for the post-transcriptional transfer of two methyl groups to two universally conserved adenosines located near the 3'end of the small subunit rRNA and participate in ribosome maturation. All sequenced genomes of Chlamydia reveal a ksgA homolog in each species, including C. trachomatis. Yet absence of a S-adenosyl-methionine synthetase in Chlamydia, the conserved enzyme involved in the synthesis of the methyl donor S-adenosyl-L-methionine, raises a doubt concerning the activity of the KsgA homolog in these organisms. Results Lack of the dimethylated adenosines following ksgA inactivation confers resistance to kasugamycin (KSM) in E. coli. Expression of the C. trachomatis L2 KsgA ortholog restored KSM sensitivity to the E. coli ksgA mutant, suggesting that the chlamydial KsgA homolog has specific rRNA dimethylase activity. C. trachomatis growth was sensitive to KSM and we were able to isolate a KSM resistant mutant of C. trachomatis containing a frameshift mutation in ksgA, which led to the formation of a shorter protein with no activity. Growth of the C. trachomatis ksgA mutant was negatively affected in cell culture highlighting the importance of the methylase in the development of these obligate intracellular and as yet genetically intractable pathogens. Conclusion The presence of a functional rRNA dimethylase enzyme belonging to the KsgA family in Chlamydia presents an excellent chemotherapeutic target with real potential. It also confirms the existence of S-adenosyl-methionine - dependent methylation reactions in Chlamydia raising the question of how these organisms acquire this cofactor.
Collapse
Affiliation(s)
- Rachel Binet
- Department of Microbiology and Immunology, F, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | |
Collapse
|
27
|
Identification and characterization of a novel multidrug resistance operon, mdtRP (yusOP), of Bacillus subtilis. J Bacteriol 2009; 191:3273-81. [PMID: 19286808 DOI: 10.1128/jb.00151-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using comparative genome sequencing analysis, we identified a novel mutation in Bacillus subtilis that confers a low level of resistance to fusidic acid. This mutation was located in the mdtR (formerly yusO) gene, which encodes a MarR-type transcriptional regulator, and conferred a low level of resistance to several antibiotics, including novobiocin, streptomycin, and actinomycin D. Transformation experiments showed that this mdtR mutation was responsible for multidrug resistance. Northern blot analysis revealed that the downstream gene mdtP (formerly yusP), which encodes a multidrug efflux transporter, is cotranscribed with mdtR as an operon. Disruption of the mdtP gene completely abolished the multidrug resistance phenotype observed in the mdtR mutant. DNase I footprinting and primer extension analyses demonstrated that the MdtR protein binds directly to the mdtRP promoter, thus leading to repression of its transcription. Moreover, gel mobility shift analysis indicated that an Arg83 --> Lys or Ala67 --> Thr substitution in MdtR significantly reduces binding affinity to DNA, resulting in derepression of mdtRP transcription. Low concentrations of fusidic acid induced the expression of mdtP, although the level of mdtP expression was much lower than that in the mdtR disruptant. These findings indicate that the MdtR protein is a repressor of the mdtRP operon and that the MdtP protein functions as a multidrug efflux transporter in B. subtilis.
Collapse
|