1
|
Farfán-García ED, Kilic A, García-Machorro J, Cuevas-Galindo ME, Rubio-Velazquez BA, García-Coronel IH, Estevez-Fregoso E, Trujillo-Ferrara JG, Soriano-Ursúa MA. Antimicrobial (viral, bacterial, fungal, and parasitic) mechanisms of action of boron-containing compounds. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:733-754. [DOI: 10.1016/b978-0-323-85730-7.00026-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zhou Z, Zhang J, Zhou E, Ren C, Wang J, Wang Y. Small molecule NS5B RdRp non-nucleoside inhibitors for the treatment of HCV infection: A medicinal chemistry perspective. Eur J Med Chem 2022; 240:114595. [PMID: 35868125 DOI: 10.1016/j.ejmech.2022.114595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection has become a global health problem with enormous risks. Nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) is a component of HCV, which can promote the formation of the viral RNA replication complex and is also an essential part of the replication complex itself. It plays a vital role in the synthesis of the positive and negative strands of HCV RNA. Therefore, the development of small-molecule inhibitors targeting NS5B RdRp is of great value for treating HCV infection-related diseases. Compared with NS5B RdRp nucleoside inhibitors, non-nucleoside inhibitors have more flexible structures, simpler mechanisms of action, and more predictable efficacy and safety of drugs in humans. Technological advances over the past decade have led to remarkable achievements in developing NS5B RdRp inhibitors. This review will summarize the non-nucleoside inhibitors targeting NS5B RdRp developed in the past decade and describe their structure optimization process and structure-activity relationship.
Collapse
Affiliation(s)
- Zhilan Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Enda Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Sofia MJ. Curing Hepatitis C with Direct‐Acting Antiviral Therapy. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2022:13-57. [DOI: 10.1002/9783527810697.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Bhatia S, Narayanan N, Nagpal S, Nair DT. Antiviral therapeutics directed against RNA dependent RNA polymerases from positive-sense viruses. Mol Aspects Med 2021; 81:101005. [PMID: 34311994 DOI: 10.1016/j.mam.2021.101005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/18/2023]
Abstract
Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.
Collapse
Affiliation(s)
- Sonam Bhatia
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
5
|
Abstract
Over the past 60 years, more than 100 antiviral drugs or their combinations have been approved for clinical use. Antiviral drugs can be classified according to their chemical nature (e.g., small-molecules, peptides, biologics) or mechanisms of drug actions against specific viral proteins (e.g., polymerase inhibitors, protease inhibitors, glycoprotein inhibitors). This article provides an overview of antiviral classifications in 10 important human viruses: hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), herpes simplex virus (HSV), variola virus (human smallpox), varicella zoster virus (VZV), influenza virus, respiratory syncytial virus (RSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
|
6
|
Chong PY, Shotwell JB, Miller J, Price DJ, Maynard A, Voitenleitner C, Mathis A, Williams S, Pouliot JJ, Creech K, Wang F, Fang J, Zhang H, Tai VWF, Turner E, Kahler KM, Crosby R, Peat AJ. Design of N-Benzoxaborole Benzofuran GSK8175-Optimization of Human Pharmacokinetics Inspired by Metabolites of a Failed Clinical HCV Inhibitor. J Med Chem 2019; 62:3254-3267. [PMID: 30763090 PMCID: PMC6466479 DOI: 10.1021/acs.jmedchem.8b01719] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
We previously described the discovery
of GSK5852 (1), a non-nucleoside polymerase (NS5B) inhibitor
of hepatitis C virus (HCV), in which an N-benzyl
boronic acid was essential for potent antiviral activity. Unfortunately,
facile benzylic oxidation resulted in a short plasma half-life (5
h) in human volunteers, and a backup program was initiated to remove
metabolic liabilities associated with 1. Herein, we describe
second-generation NS5B inhibitors including GSK8175 (49), a sulfonamide-N-benzoxaborole analog with low
in vivo clearance across preclinical species and broad-spectrum activity
against HCV replicons. An X-ray structure of NS5B protein cocrystallized
with 49 revealed unique protein-inhibitor interactions
mediated by an extensive network of ordered water molecules and the
first evidence of boronate complex formation within the binding pocket.
In clinical studies, 49 displayed a 60–63 h half-life
and a robust decrease in viral RNA levels in HCV-infected patients,
thereby validating our hypothesis that reducing benzylic oxidation
would improve human pharmacokinetics and lower efficacious doses relative
to 1.
Collapse
Affiliation(s)
- Pek Y Chong
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - J Brad Shotwell
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - John Miller
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Daniel J Price
- GlaxoSmithKline , 200 Cambridge Park Drive , Cambridge , Massachusetts 02140 , United States
| | - Andy Maynard
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Christian Voitenleitner
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Amanda Mathis
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Shawn Williams
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Jeffrey J Pouliot
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Katrina Creech
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Feng Wang
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Jing Fang
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Huichang Zhang
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Vincent W-F Tai
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Elizabeth Turner
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Kirsten M Kahler
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Renae Crosby
- GlaxoSmithKline , 5 Moore Drive , Research Triangle Park , North Carolina 27709 , United States
| | - Andrew J Peat
- GlaxoSmithKline , 1250 South Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| |
Collapse
|
7
|
Ganta NM, Gedda G, Rathnakar B, Satyanarayana M, Yamajala B, Ahsan MJ, Jadav SS, Balaraju T. A review on HCV inhibitors: Significance of non-structural polyproteins. Eur J Med Chem 2018; 164:576-601. [PMID: 30639895 PMCID: PMC7185800 DOI: 10.1016/j.ejmech.2018.12.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) mortality and morbidity is a world health misery with an approximate 130–150 million chronically HCV tainted and suffering individuals and it initiate critical liver malfunction like cirrhosis, hepatocellular carcinoma or liver HCV cancer. HCV NS5B protein one of the best studied therapeutic target for the identification of new drug candidates to be added to the combination or multiple combination medication recently approved. During the past few years, NS5B has thus been an important object of attractive medicinal chemistry endeavors, which induced to the surfacing of betrothal preclinical drug molecules. In this scenario, the current review set limit to discuss research published on NS5B and few other therapeutic functional inhibitors concentrating on hit investigation, hit to lead optimization, ADME parameters evaluation, and the SAR data which was out for each compound type and similarity taken into consideration. The discussion outlined in this specific review will surly helpful and vital tool for those medicinal chemists investigators working with HCV research programs mainly pointing on NS5B and set broad spectrum identification of creative anti HCV compounds. This mini review also tells each and every individual compound ability related how much they are active against NS5B and few other targets. Hepatitis C infection causes severe liver cirrhosis and carcinoma. The new acute HCV infections are raising every year and mortality rate become serious concern. The plausible list of anti-HCV drugs and clinical agents were listed in this review. The divergent medicinal scaffolds as anti-HCV agents were presented as per their targets.
Collapse
Affiliation(s)
- Narayana Murthy Ganta
- Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak, Telangana, 502313, India
| | - Gangaraju Gedda
- Department of Chemistry, School of Science, GITAM deemed to be University, Rudraram, Patancheru Mandal, Hyderabad, Telangana, Sangareddy Dist. 502329, India
| | - Bethi Rathnakar
- Department of Pharmaceutical Chemistry, Telangana University, Nizamabad, Telangana, 503322, India
| | - Mavurapu Satyanarayana
- Department of Pharmaceutical Chemistry, Telangana University, Nizamabad, Telangana, 503322, India
| | - Bhaskar Yamajala
- Department of Chemistry, School of Science, GITAM deemed to be University, Rudraram, Patancheru Mandal, Hyderabad, Telangana, Sangareddy Dist. 502329, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Surender Singh Jadav
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India.
| | - Tuniki Balaraju
- Deapartment of Chemistry, Material Science Centre, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, WB, 741 246, India.
| |
Collapse
|
8
|
Bowman RK, Bullock KM, Copley RCB, Deschamps NM, McClure MS, Powers JD, Wolters AM, Wu L, Xie S. Conversion of a Benzofuran Ester to an Amide through an Enamine Lactone Pathway: Synthesis of HCV Polymerase Inhibitor GSK852A. J Org Chem 2015; 80:9610-9. [DOI: 10.1021/acs.joc.5b01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roy K. Bowman
- Product
Development, GlaxoSmithKline, 5 Moore Drive, Research Triangle
Park, Durham, North Carolina 27709, United States
| | - Kae M. Bullock
- Product
Development, GlaxoSmithKline, 5 Moore Drive, Research Triangle
Park, Durham, North Carolina 27709, United States
| | - Royston C. B. Copley
- Molecular
Discovery Research, GlaxoSmithKline Medicines Research Centre, Gunnels
Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Nicole M. Deschamps
- Product
Development, GlaxoSmithKline, 5 Moore Drive, Research Triangle
Park, Durham, North Carolina 27709, United States
| | - Michael S. McClure
- Product
Development, GlaxoSmithKline, 5 Moore Drive, Research Triangle
Park, Durham, North Carolina 27709, United States
| | - Jeremiah D. Powers
- Product
Development, GlaxoSmithKline, 5 Moore Drive, Research Triangle
Park, Durham, North Carolina 27709, United States
| | - Andy M. Wolters
- Product
Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Lianming Wu
- Product
Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shiping Xie
- Product
Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
9
|
Preclinical Characterization and In Vivo Efficacy of GSK8853, a Small-Molecule Inhibitor of the Hepatitis C Virus NS4B Protein. Antimicrob Agents Chemother 2015; 59:6539-50. [PMID: 26259798 DOI: 10.1128/aac.00813-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) NS4B protein is an antiviral therapeutic target for which small-molecule inhibitors have not been shown to exhibit in vivo efficacy. We describe here the in vitro and in vivo antiviral activity of GSK8853, an imidazo[1,2-a]pyrimidine inhibitor that binds NS4B protein. GSK8853 was active against multiple HCV genotypes and developed in vitro resistance mutations in both genotype 1a and genotype 1b replicons localized to the region of NS4B encoding amino acids 94 to 105. A 20-day in vitro treatment of replicons with GSK8853 resulted in a 2-log drop in replicon RNA levels, with no resistance mutation breakthrough. Chimeric replicons containing NS4B sequences matching known virus isolates showed similar responses to a compound with genotype 1a sequences but altered efficacy with genotype 1b sequences, likely corresponding to the presence of known resistance polymorphs in those isolates. In vivo efficacy was tested in a humanized-mouse model of HCV infection, and the results showed a 3-log drop in viral RNA loads over a 7-day period. Analysis of the virus remaining at the end of in vivo treatment revealed resistance mutations encoding amino acid changes that had not been identified by in vitro studies, including NS4B N56I and N99H. Our findings provide an in vivo proof of concept for HCV inhibitors targeting NS4B and demonstrate both the promise and potential pitfalls of developing NS4B inhibitors.
Collapse
|
10
|
In vitro activity and resistance profile of dasabuvir, a nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother 2014; 59:1505-11. [PMID: 25534735 DOI: 10.1128/aac.04619-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dasabuvir (ABT-333) is a nonnucleoside inhibitor of the RNA-dependent RNA polymerase encoded by the hepatitis C virus (HCV) NS5B gene. Dasabuvir inhibited recombinant NS5B polymerases derived from HCV genotype 1a and 1b clinical isolates, with 50% inhibitory concentration (IC50) values between 2.2 and 10.7 nM, and was at least 7,000-fold selective for the inhibition of HCV genotype 1 polymerases over human/mammalian polymerases. In the HCV subgenomic replicon system, dasabuvir inhibited genotype 1a (strain H77) and 1b (strain Con1) replicons with 50% effective concentration (EC50) values of 7.7 and 1.8 nM, respectively, with a 13-fold decrease in inhibitory activity in the presence of 40% human plasma. This level of activity was retained against a panel of chimeric subgenomic replicons that contained HCV NS5B genes from 22 genotype 1 clinical isolates from treatment-naive patients, with EC50s ranging between 0.15 and 8.57 nM. Maintenance of replicon-containing cells in medium containing dasabuvir at concentrations 10-fold or 100-fold greater than the EC50 resulted in selection of resistant replicon clones. Sequencing of the NS5B coding regions from these clones revealed the presence of variants, including C316Y, M414T, Y448C, Y448H, and S556G, that are consistent with binding to the palm I site of HCV polymerase. Consequently, dasabuvir retained full activity against replicons known to confer resistance to other polymerase inhibitors, including the S282T variant in the nucleoside binding site and the M423T, P495A, P495S, and V499A single variants in the thumb domain. The use of dasabuvir in combination with inhibitors targeting HCV NS3/NS4A protease (ABT-450 with ritonavir) and NS5A (ombitasvir) is in development for the treatment of HCV genotype 1 infections.
Collapse
|
11
|
Gentile I, Buonomo AR, Zappulo E, Borgia G. Discontinued drugs in 2012 – 2013: hepatitis C virus infection. Expert Opin Investig Drugs 2014; 24:239-51. [DOI: 10.1517/13543784.2015.982274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ivan Gentile
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| | - Antonio Riccardo Buonomo
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| | - Emanuela Zappulo
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| | - Guglielmo Borgia
- University of Naples ‘Federico II’, Department of Clinical Medicine and Surgery (Ed. 18), via S. Pansini 5,I-80131, Naples, Italy ;
| |
Collapse
|
12
|
Wilfret DA, Walker J, Voitenleitner C, Baptiste-Brown S, Lovern M, Kim J, Adkison K, Shotwell B, Mathis A, Moss L, Lee D, Yu L, Gan J, Spaltenstein A. A randomized, double blind, dose escalation, first time in human study to assess the safety, tolerability, pharmacokinetics, and antiviral activity of single doses of GSK2485852 in chronically infected hepatitis C subjects. Clin Pharmacol Drug Dev 2014; 3:439-48. [PMID: 27129119 DOI: 10.1002/cpdd.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/02/2014] [Indexed: 12/09/2022]
Abstract
This first-time-in-human, randomized, double-blind, placebo-controlled, dose-escalation study assessed the safety, tolerability, pharmacokinetics, and antiviral activity of GSK2485852, a hepatitis C virus (HCV) NS5B inhibitor, in 27 chronically infected HCV genotype-1 subjects. Subjects received GSK2485852 70, 420, and 70 mg with a moderate fat/caloric meal. Safety, pharmacokinetics, antiviral activity, HCV genotype/phenotype, and interleukin 28B genotype were evaluated. A statistically significant reduction in HCV ribonucleic acid (RNA) was observed after a single dose of 420 mg GSK2485852 (-1.33 log10 IU/mL) compared with placebo (-0.09 log10 IU/mL) at 24 hours post-dose. Subjects receiving 70 mg GSK2485852 were exposed to concentrations above the protein-adjusted 90% effective concentration for a short time; none experienced a significant decline in HCV RNA (-0.47 log10 copies/mL). GSK2485852 was readily absorbed; however, the observed geometric mean maximum plasma concentration (Cmax ) and area under the curve (AUC) values were significantly lower than expected due to a higher-than-predicted-oral clearance. Co-administration with food reduced the AUC and Cmax of GSK2485852 by 40% and 70%, respectively. Two metabolites were detected in human blood with one having approximately 50% higher concentrations than those of the parent. GSK2485852 was well-tolerated and exhibited antiviral activity after a single 420 mg dose in HCV subjects.
Collapse
Affiliation(s)
| | - Jill Walker
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | - Mark Lovern
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Joseph Kim
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | | - Lee Moss
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Daniel Lee
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Lou Yu
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | - Jianjun Gan
- GlaxoSmithKline, Research Triangle Park, NC, USA
| | | |
Collapse
|