1
|
Ali Agha AS, Al-Samydai A, Aburjai T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025; 11:e42013. [PMID: 39906792 PMCID: PMC11791237 DOI: 10.1016/j.heliyon.2025.e42013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Background The issue of antimicrobial resistance (AMR) poses a major challenge to global health, evidenced by alarming mortality predictions and the diminishing efficiency of conventional antimicrobial drugs. The CRISPR-Cas system has proven to be a powerful tool in addressing this challenge. It originated from bacterial adaptive immune mechanisms and has gained significant recognition in the scientific community. Objectives This review aims to explore the applications of CRISPR-Cas technologies in combating AMR, evaluating their effectiveness, challenges, and potential for integration into current antimicrobial strategies. Methods We conducted a comprehensive review of recent literature from databases such as PubMed and Web of Science, focusing on studies that employ CRISPR-Cas technologies against AMR. Conclusions CRISPR-Cas technologies offer a transformative approach to combat AMR, with potential applications that extend beyond traditional antimicrobial strategies. Integrating these technologies with existing methods could significantly enhance our ability to manage and potentially reverse the growing problem of antimicrobial resistance. Future research should address technical and ethical barriers to facilitate safe and effective clinical and environmental applications. This review underscores the necessity for interdisciplinary collaboration and international cooperation to harness the full potential of CRISPR-Cas technologies in the fight against superbugs.
Collapse
Affiliation(s)
- Ahmed S.A. Ali Agha
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, (AA), Amman, 19328, Jordan
| | - Talal Aburjai
- School of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Frusteri Chiacchiera A, Casanova M, Bellato M, Piazza A, Migliavacca R, Batt G, Magni P, Pasotti L. Harnessing CRISPR interference to resensitize laboratory strains and clinical isolates to last resort antibiotics. Sci Rep 2025; 15:261. [PMID: 39747289 PMCID: PMC11696610 DOI: 10.1038/s41598-024-81989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The global race against antimicrobial resistance requires novel antimicrobials that are not only effective in killing specific bacteria, but also minimize the emergence of new resistances. Recently, CRISPR/Cas-based antimicrobials were proposed to address killing specificity with encouraging results. However, the emergence of target sequence mutations triggered by Cas-cleavage was identified as an escape strategy, posing the risk of generating new antibiotic-resistance gene (ARG) variants. Here, we evaluated an antibiotic re-sensitization strategy based on CRISPR interference (CRISPRi), which inhibits gene expression without damaging target DNA. The resistance to four antibiotics, including last resort drugs, was significantly reduced by individual and multi-gene targeting of ARGs in low- to high-copy numbers in recombinant E. coli. Escaper analysis confirmed the absence of mutations in target sequence, corroborating the harmless role of CRISPRi in the selection of new resistances. E. coli clinical isolates carrying ARGs of severe clinical concern were then used to assess the robustness of CRISPRi under different growth conditions. Meropenem, colistin and cefotaxime susceptibility was successfully increased in terms of MIC (up to > 4-fold) and growth delay (up to 11 h) in a medium-dependent fashion. ARG repression also worked in a pathogenic strain grown in human urine, as a demonstration of CRISPRi-mediated re-sensitization in host-mimicking media. This study laid the foundations for further leveraging CRISPRi as antimicrobial agent or research tool to selectively repress ARGs and investigate resistance mechanisms.
Collapse
Affiliation(s)
- Angelica Frusteri Chiacchiera
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, Paris, France
| | - Michela Casanova
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy
| | - Massimo Bellato
- Department of Molecular Medicine, Department of Information Engineering, University of Padua, Via Gabelli 63, Padua, 35121, Italy
| | - Aurora Piazza
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Brambilla 74, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Brambilla 74, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, Paris, France
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy.
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy.
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, Paris, France.
| |
Collapse
|
3
|
Hajizadeh Y, Badmasti F, Oloomi M. Inhibition of the bla OXA-48 gene expression in Klebsiella pneumoniae by a plasmid carrying CRISPRi-Cas9 system. Gene 2024; 910:148332. [PMID: 38431235 DOI: 10.1016/j.gene.2024.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotic resistance is an increasing concern that threatens the effectiveness of treating bacterial infections. The spread of carbapenem resistant Klebsiella pneumoniae poses a significant threat to global public health. To combat this issue, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system is being developed. This system includes a single guide RNA (sgRNA) and a nuclease dead Cas9 (dCas9), which work together to downregulate gene expression. Our project involved the use of the CRISPRi system to reduce gene expression of the beta-lactamase oxacillin-48 (blaOXA-48) gene in K. pneumoniae. We designed a sgRNA and cloned it into pJMP1363 plasmid harboring the CRISPRi system. The pJMP1363-sgRNA construct was transformed in K. pneumoniae harboring the blaOXA-48 gene. The MIC test was used to evaluate the antimicrobial resistance, and quantitative real-time RT-PCR was used to confirm the inhibition of the OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA construct expression. The Galleria mellonella larvae model was also utilized for in vivo assay. Following the transformation, the MIC test indicated a 4-fold reduction in meropenem resistance, and qRT-PCR analysis revealed a 60-fold decrease in the mRNA OXA-48 harboring the pJMP1363-sgRNA construct expression. Additionally, G. mellonella larvae infected with OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA showed higher survival rates. Based on the findings, it can be concluded that the CRISPR interference technique has successfully reduced antibiotic resistance and virulence in the K. pneumoniae harboring the blaOXA-48 gene.
Collapse
Affiliation(s)
- Yeganeh Hajizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mana Oloomi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Gager C, Flores-Mireles AL. Blunted blades: new CRISPR-derived technologies to dissect microbial multi-drug resistance and biofilm formation. mSphere 2024; 9:e0064223. [PMID: 38511958 PMCID: PMC11036814 DOI: 10.1128/msphere.00642-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
The spread of multi-drug-resistant (MDR) pathogens has rapidly outpaced the development of effective treatments. Diverse resistance mechanisms further limit the effectiveness of our best treatments, including multi-drug regimens and last line-of-defense antimicrobials. Biofilm formation is a powerful component of microbial pathogenesis, providing a scaffold for efficient colonization and shielding against anti-microbials, which further complicates drug resistance studies. Early genetic knockout tools didn't allow the study of essential genes, but clustered regularly interspaced palindromic repeat inference (CRISPRi) technologies have overcome this challenge via genetic silencing. These tools rapidly evolved to meet new demands and exploit native CRISPR systems. Modern tools range from the creation of massive CRISPRi libraries to tunable modulation of gene expression with CRISPR activation (CRISPRa). This review discusses the rapid expansion of CRISPRi/a-based technologies, their use in investigating MDR and biofilm formation, and how this drives further development of a potent tool to comprehensively examine multi-drug resistance.
Collapse
Affiliation(s)
- Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
5
|
Yao S, Wu X, Li Y, Song Y, Wang C, Zhang G, Feng J. Harnessing the Native Type I-F CRISPR-Cas System of Acinetobacter baumannii for Genome Editing and Gene Repression. Int J Antimicrob Agents 2023; 62:106962. [PMID: 37673355 DOI: 10.1016/j.ijantimicag.2023.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION The rapid emergence of infections caused by multidrug-resistant Acinetobacter baumannii (A. baumannii) has posed a serious threat to global public health. It has therefore become important to obtain a deeper understanding of the mechanisms of multidrug resistance and pathogenesis of A. baumannii; however, there are still relatively few genetic engineering tools for this. Although A. baumannii possesses Type I-F CRISPR-Cas systems, they have not yet been used for genetic modifications. METHODS A single plasmid-mediated native Type I-F CRISPR-Cas system for gene editing and gene regulation in A. baumannii was developed. The protospacer adjacent motif sequence was identified as 5'-NCC-3' by analysis of the CRISPR array. RESULTS Through introduction of the RecAb homologous recombination system, the knockout efficiency of the oxyR gene significantly increased from 12.5% to 75.0% in A. baumannii. To investigate transcriptional inhibition by the Type I-F CRISPR system, the gene encoding its Cas2-3 nuclease was deleted and the native Type I-F Cascade effector was repurposed to regulate transcription of alcohol dehydrogenase gene adh4. The level of adh4 transcription was inhibited by up to 900-fold compared with the control. The Cascade transcriptional module was also successfully applied in a clinical Klebsiella pneumoniae isolate. CONCLUSION This study proposed a tool for future exploration of the genetic characteristics of A. baumannii or other clinical strains.
Collapse
Affiliation(s)
- Shigang Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Qian Y, Zhou D, Li M, Zhao Y, Liu H, Yang L, Ying Z, Huang G. Application of CRISPR-Cas system in the diagnosis and therapy of ESKAPE infections. Front Cell Infect Microbiol 2023; 13:1223696. [PMID: 37662004 PMCID: PMC10470840 DOI: 10.3389/fcimb.2023.1223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Antimicrobial-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. ESKAPE pathogens are the most common opportunistic pathogens in nosocomial infections, and a considerable number of their clinical isolates are not susceptible to conventional antimicrobial therapy. Therefore, innovative therapeutic strategies that can effectively deal with ESKAPE pathogens will bring huge social and economic benefits and ease the suffering of tens of thousands of patients. Among these strategies, CRISPR (clustered regularly interspaced short palindromic repeats) system has received extra attention due to its high specificity. Regrettably, there is currently no direct CRISPR-system-based anti-infective treatment. This paper reviews the applications of CRISPR-Cas system in the study of ESKAPE pathogens, aiming to provide directions for the research of ideal new drugs and provide a reference for solving a series of problems caused by multidrug-resistant bacteria (MDR) in the post-antibiotic era. However, most research is still far from clinical application.
Collapse
Affiliation(s)
- Yizheng Qian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dapeng Zhou
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Burn Plastic and Wound Repair Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Min Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yongxiang Zhao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Huanhuan Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Li Yang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhiqin Ying
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Guangtao Huang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- Department of Burn and Plastic Surgery, Department of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
7
|
Mayorga-Ramos A, Zúñiga-Miranda J, Carrera-Pacheco SE, Barba-Ostria C, Guamán LP. CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infect Dis 2023; 9:1283-1302. [PMID: 37347230 PMCID: PMC10353011 DOI: 10.1021/acsinfecdis.2c00649] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/23/2023]
Abstract
The emergence of antibiotic-resistant bacterial strains is a source of public health concern across the globe. As the discovery of new conventional antibiotics has stalled significantly over the past decade, there is an urgency to develop novel approaches to address drug resistance in infectious diseases. The use of a CRISPR-Cas-based system for the precise elimination of targeted bacterial populations holds promise as an innovative approach for new antimicrobial agent design. The CRISPR-Cas targeting system is celebrated for its high versatility and specificity, offering an excellent opportunity to fight antibiotic resistance in pathogens by selectively inactivating genes involved in antibiotic resistance, biofilm formation, pathogenicity, virulence, or bacterial viability. The CRISPR-Cas strategy can enact antimicrobial effects by two approaches: inactivation of chromosomal genes or curing of plasmids encoding antibiotic resistance. In this Review, we provide an overview of the main CRISPR-Cas systems utilized for the creation of these antimicrobials, as well as highlighting promising studies in the field. We also offer a detailed discussion about the most commonly used mechanisms for CRISPR-Cas delivery: bacteriophages, nanoparticles, and conjugative plasmids. Lastly, we address possible mechanisms of interference that should be considered during the intelligent design of these novel approaches.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Johana Zúñiga-Miranda
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Saskya E. Carrera-Pacheco
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| | - Carlos Barba-Ostria
- Escuela
de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170902, Ecuador
| | - Linda P. Guamán
- Centro
de Investigación Biomédica (CENBIO), Facultad de Ciencias
de la Salud Eugenio Espejo, Universidad
UTE, Quito 170527, Ecuador
| |
Collapse
|
8
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|