1
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Yedle R, Reniguntla MK, Puttaswamy R, Puttarangappa P, Hiremath S, Nanjundappa M, Jayaraman R. Neutropenic Rat Thigh Infection Model for Evaluation of the Pharmacokinetics/Pharmacodynamics of Anti-Infectives. Microbiol Spectr 2023; 11:e0013323. [PMID: 37260385 PMCID: PMC10433970 DOI: 10.1128/spectrum.00133-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
The neutropenic mouse infection model is extensively used to characterize the pharmacokinetics/pharmacodynamics (PK/PD) of anti-infective agents. However, it is difficult to evaluate agents following intravenous (i.v.) infusions using this model. Furthermore, in many drug discovery programs, lead identification and optimization is performed in rats, and pharmacology is performed in mice. Alternative models of infection are needed for robust predictions of PK/PD in humans. The rat is an alternative model of infection which can overcome the shortcomings of the mouse model. However, the rat neutropenic thigh infection (NTI) model has not been adequately characterized for evaluation of the PK/PD of anti-infectives. The aim of this study was to characterize the PK/PD of ciprofloxacin against bacterial pathogens in a rat NTI model. We studied the PK/PD relationships of ciprofloxacin against wild-type Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae in neutropenic Wistar rats following administration of 10, 30, and 100 mg/kg as single intravenous boluses and 30- and 60-min infusions. The PK/PD of ciprofloxacin against all four pathogens was AUC/MIC dependent and independent of the duration of administration at 10, 30, and 100 mg/kg. At human-equivalent rat doses, the PK/PD targets of ciprofloxacin achieved in rats for microbiological cure were similar to those reported in human patients. The neutropenic rat thigh infection model can be used to evaluate anti-infective agents intended to be administered as infusions in the clinic, and it complements the mouse model, increasing the robustness of PK/PD predictions in humans. IMPORTANCE Many antibiotics are administered as intravenous infusions in the clinic, especially in intensive care units. Anti-infective drug discovery companies develop clinical candidates that are intended to be administered as i.v. infusions in the clinic. However, there are no well-characterized models with which they can evaluate the PK/PD of the candidates following i.v. infusions. The neutropenic rat thigh infection model reported in this study helps in evaluating anti-infective agents that are intended to be administered as i.v. infusions in the clinic. The rat model is useful for simulating the clinical conditions for i.v. infusions for treatment of infections, such as acute bacterial skin and skin structure, lung, and urinary tract infections. This model is predictive of efficacy in humans and can serve as an additional confirmatory model, along with the mouse model, for determining the proof of concept and for making robust predictions of efficacy in humans.
Collapse
Affiliation(s)
- Randhir Yedle
- TheraIndx Lifesciences Pvt. Ltd., Nelamangala, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
3
|
Potteth US, Upadhyay T, Saini S, Saraogi I. Novel Antibacterial Targets in Protein Biogenesis Pathways. Chembiochem 2021; 23:e202100459. [PMID: 34643994 DOI: 10.1002/cbic.202100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Indexed: 11/11/2022]
Abstract
Antibiotic resistance has emerged as a global threat due to the ability of bacteria to quickly evolve in response to the selection pressure induced by anti-infective drugs. Thus, there is an urgent need to develop new antibiotics against resistant bacteria. In this review, we discuss pathways involving bacterial protein biogenesis as attractive antibacterial targets since many of them are essential for bacterial survival and virulence. We discuss the structural understanding of various components associated with bacterial protein biogenesis, which in turn can be utilized for rational antibiotic design. We highlight efforts made towards developing inhibitors of these pathways with insights into future possibilities and challenges. We also briefly discuss other potential targets related to protein biogenesis.
Collapse
Affiliation(s)
- Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Snehlata Saini
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal - 462066, Madhya Pradesh, India
| |
Collapse
|
4
|
Warn P, Thommes P, Sharp A, Sattar A, Undre N, Palacios-Fabrega JA, Karas A. Intermittent micafungin for prophylaxis in a rat model of chronic Candida albicans gut colonization. J Antimicrob Chemother 2021; 75:2919-2924. [PMID: 32719853 DOI: 10.1093/jac/dkaa243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND During antifungal prophylaxis, micafungin is generally infused IV once daily over 1 h. In practice, less-frequent dosing could improve the quality of life in patients requiring long-term treatment or prophylaxis. The feasibility of this approach was assessed using humanized doses of daily or infrequent micafungin regimens. OBJECTIVES To evaluate the effectiveness of intermittent high-dose micafungin, simulating human exposure, for prophylaxis of invasive candidiasis in a rat model of chronic Candida albicans gastrointestinal colonization and systemic dissemination. METHODS Two weeks post-infection with an oral challenge of C. albicans, Sprague-Dawley rats were immunocompromised with a cytotoxic drug and a steroid. Rats received IV infusions of: daily vehicle control; daily subcutaneous micafungin (20 mg/kg SC); high-dose micafungin (20 mg/kg bolus SC + 80 mg/kg infusion/72 h, to simulate intermittent human dosing of 300 mg/72 h); or daily fluconazole by mouth (10 mg/kg PO). The effects of antifungal prophylaxis on faecal fungal burden and systemic C. albicans dissemination were evaluated. RESULTS A rat model of chronic C. albicans gastrointestinal colonization and systemic dissemination was established, characterized by a sustained microbiological burden over 29 days and fungal recovery from normally sterile tissues. Using this model, intermittent high-dose micafungin (delivered via iPrecio pumps) to simulate humanized doses of 300 mg/72 h was significantly more effective than vehicle control, as effective as once-daily micafungin and similar to daily fluconazole at reducing faecal burden and preventing systemic dissemination. CONCLUSIONS These data indicate that intermittent high-dose micafungin can be as effective as daily therapy, supporting clinical assessment in high-risk patients requiring long-term antifungal prophylaxis.
Collapse
Affiliation(s)
- Peter Warn
- Evotec (UK) Ltd, Block 23 Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Pia Thommes
- Evotec (UK) Ltd, Block 23 Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Andrew Sharp
- Evotec (UK) Ltd, Block 23 Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Abdul Sattar
- Evotec (UK) Ltd, Block 23 Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Nasrullah Undre
- Astellas Pharma Inc., 300 Dashwood Lang Road, Bourne Business Park, Addlestone KT15 2NX, UK
| | | | - Andreas Karas
- Astellas Pharma Inc., 300 Dashwood Lang Road, Bourne Business Park, Addlestone KT15 2NX, UK
| |
Collapse
|
5
|
Kozsup M, Keogan DM, Fitzgerald-Hughes D, Enyedy ÉA, Twamley B, Buglyó P, Griffith DM. Synthesis and characterisation of Co(iii) complexes of N-formyl hydroxylamines and antibacterial activity of a Co(iii) peptide deformylase inhibitor complex. Dalton Trans 2020; 49:6980-6988. [PMID: 32347254 DOI: 10.1039/d0dt01123a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The X-ray crystal structure and pKa values of GSK322, a well-known and effective peptide deformylase inhibitor and antibacterial drug candidate, are reported. The first examples of Co(iii) complexes of N-formyl hydroxylamines are reported. Reaction of N-hydroxy-N-phenylformamide (HFA) with [Co(tren)Cl2]Cl and [Co(tpa)Cl2]Cl (where tren = tris(2-aminoethyl)amine, tpa = tris(2-pyridylmethyl)amine) with one equivalent of NaOH in H2O afforded [Co(tren)(HFA-1H)](PF6)1.5Cl0.5 (1) and [Co(tpa)(HFA-1H)]Cl2 (2), respectively. X-ray crystal structures of both complexes revealed that the N-formyl hydroxylamine group acts as a bidentate ligand, coordinating the Co(iii) centres via the carbonyl oxygen and deprotonated hydroxy group (O,O'), a coordination mode typically observed for closely related mono-deprotonated hydroxamic acids. Reaction of the N-formyl hydroxylamine-based GSK322 with [Co(tpa)Cl2]Cl afforded the corresponding Co(iii) chaperone complex of the peptide deformylase inhibitor, [Co(tpa)(GSK322-1H)](PF6)2. GSK322 and [Co(tpa)(GSK322-1H)](PF6)2 exhibited better Gram-positive activity than Gram-negative, where low MICs (1.56-6.25 μM) were determined for S. aureus strains, independent of their antibiotic susceptibility.
Collapse
Affiliation(s)
- Máté Kozsup
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Donal M Keogan
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | - Deirdre Fitzgerald-Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education & Research Centre, Beaumont Hospital, Beaumont, Dublin 9, Ireland
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary and MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
| | - Darren M Griffith
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland. and SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland
| |
Collapse
|
6
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
7
|
Hoover JL, Singley CM, Elefante P, Rittenhouse S. Efficacy of Human Exposures of Gepotidacin (GSK2140944) against Escherichia coli in a Rat Pyelonephritis Model. Antimicrob Agents Chemother 2019; 63:e00086-19. [PMID: 31061153 PMCID: PMC6591613 DOI: 10.1128/aac.00086-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/27/2019] [Indexed: 01/09/2023] Open
Abstract
Gepotidacin is a first-in-class triazaacenaphthylene antibacterial that inhibits bacterial type II topoisomerases and has in vitro activity against a range of bacterial pathogens, including Escherichia coli Urinary tract infections often progress to pyelonephritis and are a worldwide problem due to the prevalence of multidrug-resistant E. coli strains. This study evaluated the in vivo efficacy of gepotidacin against four strains of multidrug-resistant E. coli in a rat pyelonephritis model. Infected rats received controlled intravenous infusions of gepotidacin every 12 h for 4 days that recreated human systemic exposures from oral gepotidacin (800 or 1,500 mg twice daily for 4 days). Liquid chromatography-tandem mass spectrometry analysis of blood samples and kidney homogenates showed that gepotidacin levels were 6- to 7-fold higher in kidneys than in blood. Across experiments with 4-day gepotidacin treatments, bacterial CFU in kidneys were reduced by 2.9 to 4.9 log10 compared to pretreatment levels, and bladder CFU were reduced to the lower limit of detection (1.2 log10). The efficacies of 800- and 1,500-mg gepotidacin exposures were statistically similar. A time-course experiment indicated that a period of more than 24 h of gepotidacin treatment was required for efficacy and that 4 days were needed for maximal response. Overall, these results demonstrate that the recreated human exposures of gepotidacin studied were effective in an animal model of pyelonephritis caused by multidrug-resistant E. coli and that further evaluation for clinical use is warranted.
Collapse
|
8
|
Generating Robust and Informative Nonclinical In Vitro and In Vivo Bacterial Infection Model Efficacy Data To Support Translation to Humans. Antimicrob Agents Chemother 2019; 63:AAC.02307-18. [PMID: 30833428 PMCID: PMC6496039 DOI: 10.1128/aac.02307-18] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens.” The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens.” The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. This and the accompanying review on clinical PK/PD summarize the workshop discussions and recommendations. Nonclinical PK/PD models play a critical role in designing human dosage regimens and are essential tools for drug development. These include in vitro and in vivo efficacy models that provide valuable and complementary information for dose selection and translation from the laboratory to human. It is crucial that studies be designed, conducted, and interpreted appropriately. For antibacterial PK/PD, extensive published data and expertise are available. These have been leveraged to develop recommendations, identify common pitfalls, and describe the applications, strengths, and limitations of various nonclinical infection models and translational approaches. Despite these robust tools and published guidance, characterizing nonclinical PK/PD relationships may not be straightforward, especially for a new drug or new class. Antimicrobial PK/PD is an evolving discipline that needs to adapt to future research and development needs. Open communication between academia, pharmaceutical industry, government, and regulatory bodies is essential to share perspectives and collectively solve future challenges.
Collapse
|
9
|
Arroyo-Currás N, Ortega G, Copp DA, Ploense KL, Plaxco ZA, Kippin TE, Hespanha JP, Plaxco KW. High-Precision Control of Plasma Drug Levels Using Feedback-Controlled Dosing. ACS Pharmacol Transl Sci 2018; 1:110-118. [PMID: 32219207 PMCID: PMC7088981 DOI: 10.1021/acsptsci.8b00033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/30/2022]
Abstract
By, in effect, rendering pharmacokinetics an experimentally adjustable parameter, the ability to perform feedback-controlled dosing informed by high-frequency in vivo drug measurements would prove a powerful tool for both pharmacological research and clinical practice. Efforts to this end, however, have historically been thwarted by an inability to measure in vivo drug levels in real time and with sufficient convenience and temporal resolution. In response, we describe a closed-loop, feedback-controlled delivery system that uses drug level measurements provided by an in vivo electrochemical aptamer-based (E-AB) sensor to adjust dosing rates every 7 s. The resulting system supports the maintenance of either constant or predefined time-varying plasma drug concentration profiles in live rats over many hours. For researchers, the resultant high-precision control over drug plasma concentrations provides an unprecedented opportunity to (1) map the relationships between pharmacokinetics and clinical outcomes, (2) eliminate inter- and intrasubject metabolic variation as a confounding experimental variable, (3) accurately simulate human pharmacokinetics in animal models, and (4) measure minute-to-minute changes in a drug's pharmacokinetic behavior in response to changing health status, diet, drug-drug interactions, or other intrinsic and external factors. In the clinic, feedback-controlled drug delivery would improve our ability to accurately maintain therapeutic drug levels in the face of large, often unpredictable intra- and interpatient metabolic variation. This, in turn, would improve the efficacy and safety of therapeutic intervention, particularly for the most gravely ill patients, for whom metabolic variability is highest and the margin for therapeutic error is smallest.
Collapse
Affiliation(s)
- Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States,E-mail: . Tel.: (410) 955-3569
| | - Gabriel Ortega
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,CIC
bioGUNE, Bizkaia Technology Park, Ed. 801A, 48160, Derio, Spain
| | - David A. Copp
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Kyle L. Ploense
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Zoe A. Plaxco
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Tod E. Kippin
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - João P. Hespanha
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- ‡Department of Chemistry and Biochemistry, §Center for Bioengineering, ⊥Center for Control,
Dynamical Systems, and Computation, #Department of Psychological and Brain Sciences, and ∇The Neuroscience
Research Institute and Department of Molecular, Cellular, and Developmental
Biology, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,E-mail: . Tel.: (805) 893-5558
| |
Collapse
|
10
|
Animal Pharmacokinetic/Pharmacodynamic Studies (APPS) Reporting Guidelines. Eur J Drug Metab Pharmacokinet 2018; 43:483-494. [DOI: 10.1007/s13318-018-0498-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|