1
|
Commons RJ, Chu CS. High-dose primaquine reduces vivax relapses: time for change. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(25)00087-8. [PMID: 40112853 DOI: 10.1016/s1473-3099(25)00087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Robert J Commons
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin NT 0811, NT, Australia; WorldWide Antimalarial Resistance Network, Darwin, NT, Australia; General and Subspecialty Medicine, Grampians Health Ballarat, Ballarat, VIC, Australia.
| | - Cindy S Chu
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Fadilah I, Commons RJ, Chau NH, Chu CS, Day NPJ, Koh GCKW, Green JA, Lacerda MVG, Llanos-Cuentas A, Nelwan EJ, Nosten F, Pasaribu AP, Sutanto I, Taylor WRJ, Thriemer K, Price RN, White NJ, Baird JK, Watson JA. Methaemoglobin as a surrogate marker of primaquine antihypnozoite activity in Plasmodium vivax malaria: A systematic review and individual patient data meta-analysis. PLoS Med 2024; 21:e1004411. [PMID: 39331646 PMCID: PMC11469483 DOI: 10.1371/journal.pmed.1004411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/11/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND The 8-aminoquinolines, primaquine and tafenoquine, are the only available drugs for the radical cure of Plasmodium vivax hypnozoites. Previous evidence suggests that there is dose-dependent 8-aminoquinoline induced methaemoglobinaemia and that higher methaemoglobin concentrations are associated with a lower risk of P. vivax recurrence. We undertook a systematic review and individual patient data meta-analysis to examine the utility of methaemoglobin as a population-level surrogate endpoint for 8-aminoquinoline antihypnozoite activity to prevent P. vivax recurrence. METHODS AND FINDINGS We conducted a systematic search of Medline, Embase, Web of Science, and the Cochrane Library, from 1 January 2000 to 29 September 2022, inclusive, of prospective clinical efficacy studies of acute, uncomplicated P. vivax malaria mono-infections treated with radical curative doses of primaquine. The day 7 methaemoglobin concentration was the primary surrogate outcome of interest. The primary clinical outcome was the time to first P. vivax recurrence between day 7 and day 120 after enrolment. We used multivariable Cox proportional-hazards regression with site random-effects to characterise the time to first recurrence as a function of the day 7 methaemoglobin percentage (log base 2 transformed), adjusted for the partner schizonticidal drug, the primaquine regimen duration as a proxy for the total primaquine dose (mg base/kg), the daily primaquine dose (mg/kg), and other factors. The systematic review protocol was registered with PROSPERO (CRD42023345956). We identified 219 P. vivax efficacy studies, of which 8 provided relevant individual-level data from patients treated with primaquine; all were randomised, parallel arm clinical trials assessed as having low or moderate risk of bias. In the primary analysis data set, there were 1,747 patients with normal glucose-6-phosphate dehydrogenase (G6PD) activity enrolled from 24 study sites across 8 different countries (Indonesia, Brazil, Vietnam, Thailand, Peru, Colombia, Ethiopia, and India). We observed an increasing dose-response relationship between the daily weight-adjusted primaquine dose and day 7 methaemoglobin level. For a given primaquine dose regimen, an observed doubling in day 7 methaemoglobin percentage was associated with an estimated 30% reduction in the risk of P. vivax recurrence (adjusted hazard ratio = 0.70; 95% confidence interval [CI] [0.57, 0.86]; p = 0.0005). These pooled estimates were largely consistent across the study sites. Using day 7 methaemoglobin as a surrogate endpoint for recurrence would reduce required sample sizes by approximately 40%. Study limitations include the inability to distinguish between recrudescence, reinfection, and relapse in P. vivax recurrences. CONCLUSIONS For a given primaquine regimen, higher methaemoglobin on day 7 was associated with a reduced risk of P. vivax recurrence. Under our proposed causal model, this justifies the use of methaemoglobin as a population-level surrogate endpoint for primaquine antihypnozoite activity in patients with P. vivax malaria who have normal G6PD activity.
Collapse
Affiliation(s)
- Ihsan Fadilah
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert J. Commons
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Hub–Australia, Melbourne, Australia
- General and Subspecialty Medicine, Grampians Health, Ballarat, Australia
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P. J. Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gavin C. K. W. Koh
- Formerly Senior Director, Global Health, GlaxoSmithKline, Brentford, United Kingdom
| | - Justin A. Green
- Department of Infectious Diseases, Northwick Park Hospital, Harrow, United Kingdom
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alejandro Llanos-Cuentas
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Unit of Leishmaniasis and Malaria, Lima, Peru
| | - Erni J. Nelwan
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Division of Tropical Medicine and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ayodhia Pitaloka Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, Indonesia
- Tridarma Healthcare Empowerment Foundation, Medan, Indonesia
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Walter R. J. Taylor
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kamala Thriemer
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Hub–Australia, Melbourne, Australia
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - J. Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James A. Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Infectious Diseases Data Observatory, Oxford, United Kingdom
| |
Collapse
|
3
|
Commons RJ, Rajasekhar M, Edler P, Abreha T, Awab GR, Baird JK, Barber BE, Chu CS, Cui L, Daher A, Gonzalez-Ceron L, Grigg MJ, Hwang J, Karunajeewa H, Lacerda MVG, Ladeia-Andrade S, Lidia K, Llanos-Cuentas A, Longley RJ, Pereira DB, Pasaribu AP, Pukrittayakamee S, Rijal KR, Sutanto I, Taylor WRJ, Thanh PV, Thriemer K, Vieira JLF, Watson JA, Zuluaga-Idarraga LM, White NJ, Guerin PJ, Simpson JA, Price RN. Effect of primaquine dose on the risk of recurrence in patients with uncomplicated Plasmodium vivax: a systematic review and individual patient data meta-analysis. THE LANCET. INFECTIOUS DISEASES 2024; 24:172-183. [PMID: 37748496 PMCID: PMC7615564 DOI: 10.1016/s1473-3099(23)00430-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 06/29/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.
Collapse
Affiliation(s)
- Robert J Commons
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; General and Subspecialty Medicine, Grampians Health-Ballarat, Ballarat, VIC, Australia.
| | - Megha Rajasekhar
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Peta Edler
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Tesfay Abreha
- ICAP, Columbia University Mailman School of Public Health, Addis Ababa, Ethiopia
| | - Ghulam R Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Nangarhar Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
| | - J Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bridget E Barber
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Shoklo Malaria Research Unit, MORU, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - André Daher
- Fiocruz Clinical Research Platform and Vice‑presidency of Research and Biological Collections, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Lilia Gonzalez-Ceron
- Regional Centre for Public Health Research, National Institute for Public Health, Tapachula, Mexico
| | - Matthew J Grigg
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Jimee Hwang
- US President's Malaria Initiative, Malaria Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Institute for Global Health Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Harin Karunajeewa
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil; Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil; University of Texas Medical Branch, Galveston, TX, USA
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Kartini Lidia
- Department of Pharmacology and Therapy, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| | - Alejandro Llanos-Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rhea J Longley
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia; Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Dhelio B Pereira
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Porto Velho, Brazil; Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, Brazil
| | - Ayodhia P Pasaribu
- Department of Pediatrics, Medical Faculty, Universitas Sumatera Utara, Medan, Indonesia
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Komal R Rijal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pham V Thanh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Viet Nam
| | - Kamala Thriemer
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - José Luiz F Vieira
- Federal University of Pará (Universidade Federal do Pará - UFPA), Belém, Brazil
| | - James A Watson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam; WWARN, Oxford, UK
| | - Lina M Zuluaga-Idarraga
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Facultad Nacional de Salud Publica, Universidad de Antioquia, Medellín, Colombia
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WWARN, Oxford, UK; Infectious Diseases Data Observatory (IDDO), Oxford, UK
| | - Julie A Simpson
- WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ric N Price
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia; WorldWide Antimalarial Resistance Network (WWARN), Asia-Pacific Regional Centre, Melbourne, VIC, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
5
|
Sutanto I, Soebandrio A, Ekawati LL, Chand K, Noviyanti R, Satyagraha AW, Subekti D, Santy YW, Crenna-Darusallam C, Instiaty I, Budiman W, Prasetya CB, Lardo S, Elyazar I, Duparc S, Cedar E, Rolfe K, Fernando D, Berni A, Jones S, Kleim JP, Fletcher K, Sharma H, Martin A, Taylor M, Goyal N, Green JA, Tan LK, Baird JK. Tafenoquine co-administered with dihydroartemisinin-piperaquine for the radical cure of Plasmodium vivax malaria (INSPECTOR): a randomised, placebo-controlled, efficacy and safety study. THE LANCET. INFECTIOUS DISEASES 2023; 23:1153-1163. [PMID: 37236221 PMCID: PMC10533414 DOI: 10.1016/s1473-3099(23)00213-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Tafenoquine, co-administered with chloroquine, is approved for the radical cure (prevention of relapse) of Plasmodium vivax malaria. In areas of chloroquine resistance, artemisinin-based combination therapies are used to treat malaria. This study aimed to evaluate tafenoquine plus the artemisinin-based combination therapy dihydroartemisinin-piperaquine for the radical cure of P vivax malaria. METHODS In this double-blind, double-dummy, parallel group study, glucose-6-phosphate dehydrogenase-normal Indonesian soldiers with microscopically confirmed P vivax malaria were randomly assigned by means of a computer-generated randomisation schedule (1:1:1) to dihydroartemisinin-piperaquine alone, dihydroartemisinin-piperaquine plus a masked single 300-mg dose of tafenoquine, or dihydroartemisinin-piperaquine plus 14 days of primaquine (15 mg). The primary endpoint was 6-month relapse-free efficacy following tafenoquine plus dihydroartemisinin-piperaquine versus dihydroartemisinin-piperaquine alone in all randomly assigned patients who received at least one dose of masked treatment and had microscopically confirmed P vivax at baseline (microbiological intention-to-treat population). Safety was a secondary outcome and the safety population comprised all patients who received at least one dose of masked medication. This study is registered with ClinicalTrials.gov, NCT02802501 and is completed. FINDINGS Between April 8, 2018, and Feb 4, 2019, of 164 patients screened for eligibility, 150 were randomly assigned (50 per treatment group). 6-month Kaplan-Meier relapse-free efficacy (microbiological intention to treat) was 11% (95% CI 4-22) in patients treated with dihydroartemisinin-piperaquine alone versus 21% (11-34) in patients treated with tafenoquine plus dihydroartemisinin-piperaquine (hazard ratio 0·44; 95% CI [0·29-0·69]) and 52% (37-65) in the primaquine plus dihydroartemisinin-piperaquine group. Adverse events over the first 28 days were reported in 27 (54%) of 50 patients treated with dihydroartemisinin-piperaquine alone, 29 (58%) of 50 patients treated with tafenoquine plus dihydroartemisinin-piperaquine, and 22 (44%) of 50 patients treated with primaquine plus dihydroartemisinin-piperaquine. Serious adverse events were reported in one (2%) of 50, two (4%) of 50, and two (4%) of 50 of patients, respectively. INTERPRETATION Although tafenoquine plus dihydroartemisinin-piperaquine was statistically superior to dihydroartemisinin-piperaquine alone for the radical cure of P vivax malaria, the benefit was not clinically meaningful. This contrasts with previous studies in which tafenoquine plus chloroquine was clinically superior to chloroquine alone for radical cure of P vivax malaria. FUNDING ExxonMobil, Bill & Melinda Gates Foundation, Newcrest Mining, UK Government all through Medicines for Malaria Venture; and GSK. TRANSLATION For the Indonesian translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Inge Sutanto
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Lenny L Ekawati
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia; University of Oxford Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | - Krisin Chand
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia; University of Oxford Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | | | | | - Decy Subekti
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia; University of Oxford Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | - Yulia Widya Santy
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia; University of Oxford Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | - Chelzie Crenna-Darusallam
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia; Mochtar Riady Institute for Nanotechnology, Banten, Indonesia
| | | | - Waras Budiman
- Health Service, Army of the Republic of Indonesia, Jakarta, Indonesia
| | | | - Soroy Lardo
- Health Service, Army of the Republic of Indonesia, Jakarta, Indonesia
| | - Iqbal Elyazar
- University of Oxford Clinical Research Unit-Indonesia, Jakarta, Indonesia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - J Kevin Baird
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia; University of Oxford Clinical Research Unit-Indonesia, Jakarta, Indonesia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Moore BR, Salman S, Tobe R, Benjamin J, Yadi G, Kasian B, Laman M, Robinson LJ, Page-Sharp M, Betuela I, Batty KT, Manning L, Mueller I, Davis TME. Short-course, high-dose primaquine regimens for the treatment of liver-stage vivax malaria in children. Int J Infect Dis 2023; 134:114-122. [PMID: 37269941 DOI: 10.1016/j.ijid.2023.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVES To assess the pharmacokinetics, safety, and tolerability of two high-dose, short-course primaquine (PQ) regimens compared with standard care in children with Plasmodium vivax infections. METHODS We performed an open-label pediatric dose-escalation study in Madang, Papua New Guinea (Clinicaltrials.gov NCT02364583). Children aged 5-10 years with confirmed blood-stage vivax malaria and normal glucose-6-phosphate dehydrogenase activity were allocated to one of three PQ treatment regimens in a stepwise design (group A: 0.5 mg/kg once daily for 14 days, group B: 1 mg/kg once daily for 7 days, and group C: 1 mg/kg twice daily for 3.5-days). The study assessments were completed at each treatment time point and fortnightly for 2 months after PQ administration. RESULTS Between August 2013 and May 2018, 707 children were screened and 73 met the eligibility criteria (15, 40, and 16 allocated to groups A, B, and C, respectively). All children completed the study procedures. The three regimens were safe and generally well tolerated. The pharmacokinetic analysis indicated that an additional weight adjustment of the conventionally recommended milligram per kilogram PQ doses is not necessary to ensure the therapeutic plasma concentrations in pediatric patients. CONCLUSIONS A novel, ultra-short 3.5-day PQ regimen has potential benefits for improving the treatment outcomes in children with vivax malaria that warrants further investigation in a large-scale clinical trial.
Collapse
Affiliation(s)
- Brioni R Moore
- Curtin Medical School, Curtin University, Perth, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; Medical School, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia.
| | - Sam Salman
- Medical School, The University of Western Australia, Perth, Australia; Clinical Pharmacology and Toxicology Unit, PathWest, Perth, Australia
| | - Roselyn Tobe
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - John Benjamin
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Gumul Yadi
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Bernadine Kasian
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | | | - Inoni Betuela
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Kevin T Batty
- Curtin Medical School, Curtin University, Perth, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Laurens Manning
- Medical School, The University of Western Australia, Perth, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Australia; Burnet Institute, Melbourne, Australia
| | - Timothy M E Davis
- Medical School, The University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Watson JA, Commons RJ, Tarning J, Simpson JA, Llanos Cuentas A, Lacerda MVG, Green JA, Koh GCKW, Chu CS, Nosten FH, Price RN, Day NPJ, White NJ. The clinical pharmacology of tafenoquine in the radical cure of Plasmodium vivax malaria: An individual patient data meta-analysis. eLife 2022; 11:e83433. [PMID: 36472067 PMCID: PMC9725750 DOI: 10.7554/elife.83433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Tafenoquine is a newly licensed antimalarial drug for the radical cure of Plasmodium vivax malaria. The mechanism of action and optimal dosing are uncertain. We pooled individual data from 1102 patients and 72 healthy volunteers studied in the pre-registration trials. We show that tafenoquine dose is the primary determinant of efficacy. Under an Emax model, we estimate the currently recommended 300 mg dose in a 60 kg adult (5 mg/kg) results in 70% of the maximal obtainable hypnozoiticidal effect. Increasing the dose to 7.5 mg/kg (i.e. 450 mg) would result in 90% reduction in the risk of P. vivax recurrence. After adjustment for dose, the tafenoquine terminal elimination half-life, and day 7 methaemoglobin concentration, but not the parent compound exposure, were also associated with recurrence. These results suggest that the production of oxidative metabolites is central to tafenoquine's hypnozoiticidal efficacy. Clinical trials of higher tafenoquine doses are needed to characterise their efficacy, safety and tolerability.
Collapse
Affiliation(s)
- James A Watson
- Oxford University Clinical Research Unit, Hospital for Tropical DiseasesHo Chi Minh CityViet Nam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- WorldWide Antimalarial Resistance NetworkOxfordUnited Kingdom
| | - Robert J Commons
- WorldWide Antimalarial Resistance NetworkOxfordUnited Kingdom
- Global Health Division, Menzies School of Health Research, Charles Darwin UniversityDarwinAustralia
| | - Joel Tarning
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of MelbourneMelbourneAustralia
| | - Alejandro Llanos Cuentas
- Unit of Leishmaniasis and Malaria, Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano HerediaLimaPeru
| | | | - Justin A Green
- Formerly Senior Director, Global Health, GlaxoSmithKlineBrentfordUnited Kingdom
| | - Gavin CKW Koh
- Department of Infectious Diseases, Northwick Park HospitalHarrowUnited Kingdom
| | - Cindy S Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
| | - François H Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
| | - Richard N Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- WorldWide Antimalarial Resistance NetworkOxfordUnited Kingdom
- Global Health Division, Menzies School of Health Research, Charles Darwin UniversityDarwinAustralia
| | - Nicholas PJ Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| |
Collapse
|
8
|
Park YA, Park KH, Yoon HY, Yee J, Gwak HS. Effects of CYP2D6 genotypes on Plasmodium vivax recurrence after primaquine treatment: A meta-analysis. Travel Med Infect Dis 2022; 48:102333. [PMID: 35452835 DOI: 10.1016/j.tmaid.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To elucidate the relationship between CYP2D6 polymorphisms and Plasmodium vivax recurrence in patients receiving primaquine-based treatment through systematic review and meta-analysis. METHODS We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for eligible studies published up to August of 2021. We included studies investigating the associations between CYP2D6 polymorphisms and P. vivax recurrence. We evaluated the pooled odds ratio (OR) and 95% confidence interval (CI). RESULTS Data from nine studies, including 970 patients, were analyzed. We found that CYP2D6 poor metabolizers (PMs), intermediate metabolizers (IMs), or normal metabolizers slow (NM-Ss) were associated with a 1.8-fold (95% CI, 1.34-2.45; P = 0.0001) higher recurrence of P. vivax than normal metabolizers fast (NM-Fs), extensive metabolizers (EMs), or ultrarapid metabolizer (UMs). Subgroup analysis showed that studies on both Brazilian and Southeast or East Asian individuals had similar results to the main results. Sensitivity analysis by sequentially excluding individual studies also showed robust results (OR range: 1.63-2.01). CONCLUSIONS This meta-analysis confirmed that CYP2D6 PMs, IMs, or NM-Ss increased the risk of P. vivax recurrence compared to NM-Fs, EMs, or UMs. The results of this study could be used to predict P. vivax recurrence and suggest CYP2D6 genotype-based primaquine dosing.
Collapse
Affiliation(s)
- Yoon-A Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Ki Hyun Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Ha Young Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
9
|
Tafenoquine for children: a step towards implementation. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:72-73. [PMID: 34871571 DOI: 10.1016/s2352-4642(21)00375-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
|
10
|
Measurements of 5,6 orthoquinone, surrogate for presumed active primaquine metabolite 5-hydroxyprimaquine, in the urine of Cambodian adults. Antimicrob Agents Chemother 2022; 66:e0182121. [DOI: 10.1128/aac.01821-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6 orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6 orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for
Plasmodium vivax
infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma PQ area under the curve (AUC) was lower in the NM group (460 hr*ng/mL) compared to the IM group (561 hr*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6 orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6 orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (T
max
) at 4 hours. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6 orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.
Collapse
|