1
|
Amrane D, Arnold CS, Hutter S, Sanz-Serrano J, Collia M, Azqueta A, Paloque L, Cohen A, Amanzougaghene N, Tajeri S, Franetich JF, Mazier D, Benoit-Vical F, Verhaeghe P, Azas N, Vanelle P, Botté C, Primas N. 2-Phenoxy-3-Trichloromethylquinoxalines Are Antiplasmodial Derivatives with Activity against the Apicoplast of Plasmodium falciparum. Pharmaceuticals (Basel) 2021; 14:ph14080724. [PMID: 34451821 PMCID: PMC8400257 DOI: 10.3390/ph14080724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The malaria parasite harbors a relict plastid called the apicoplast. Although not photosynthetic, the apicoplast retains unusual, non-mammalian metabolic pathways that are essential to the parasite, opening up a new perspective for the development of novel antimalarials which display a new mechanism of action. Based on the previous antiplasmodial hit-molecules identified in the 2-trichloromethylquinoxaline series, we report herein a structure–activity relationship (SAR) study at position two of the quinoxaline ring by synthesizing 20 new compounds. The biological evaluation highlighted a hit compound (3i) with a potent PfK1 EC50 value of 0.2 µM and a HepG2 CC50 value of 32 µM (Selectivity index = 160). Nitro-containing (3i) was not genotoxic, both in the Ames test and in vitro comet assay. Activity cliffs were observed when the 2-CCl3 group was replaced, showing that it played a key role in the antiplasmodial activity. Investigation of the mechanism of action showed that 3i presents a drug response by targeting the apicoplast and a quick-killing mechanism acting on another target site.
Collapse
Affiliation(s)
- Dyhia Amrane
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385 Marseille, France;
| | | | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, CEDEX 05, 13005 Marseille, France; (S.H.); (A.C.); (N.A.)
| | - Julen Sanz-Serrano
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (M.C.); (A.A.)
| | - Miguel Collia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (M.C.); (A.A.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; (J.S.-S.); (M.C.); (A.A.)
- Navarra Institute for Health Research, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain
| | - Lucie Paloque
- LCC-CNRS, Université de Toulouse, CNRS UPR8241, UPS, 31400 Toulouse, France; (L.P.); (F.B.-V.); (P.V.)
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, MAAP, Inserm ERL 1289, 31400 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Anita Cohen
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, CEDEX 05, 13005 Marseille, France; (S.H.); (A.C.); (N.A.)
| | - Nadia Amanzougaghene
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Shahin Tajeri
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Jean-François Franetich
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Dominique Mazier
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI, 75013 Paris, France; (N.A.); (S.T.); (J.-F.F.); (D.M.)
| | - Françoise Benoit-Vical
- LCC-CNRS, Université de Toulouse, CNRS UPR8241, UPS, 31400 Toulouse, France; (L.P.); (F.B.-V.); (P.V.)
- MAAP, New Antimalarial Molecules and Pharmacological Approaches, MAAP, Inserm ERL 1289, 31400 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS UPR8241, UPS, 31400 Toulouse, France; (L.P.); (F.B.-V.); (P.V.)
- CHU de Toulouse, Service Pharmacie, 330 Avenue de Grande-Bretagne, CEDEX 9, 31059 Toulouse, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, IRD, SSA, Mycology & Tropical Eucaryotic Pathogens, CEDEX 05, 13005 Marseille, France; (S.H.); (A.C.); (N.A.)
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385 Marseille, France;
- APHM, Hôpital Conception, Service Central de la Qualité et de l’Information Pharmaceutiques, 13005 Marseille, France
- Correspondence: (P.V.); (C.B.); (N.P.)
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, 38700 La Tronche, France;
- Correspondence: (P.V.); (C.B.); (N.P.)
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385 Marseille, France;
- APHM, Hôpital Conception, Service Central de la Qualité et de l’Information Pharmaceutiques, 13005 Marseille, France
- Correspondence: (P.V.); (C.B.); (N.P.)
| |
Collapse
|
2
|
Fang Y, Liu C, Rao W, Wang SY, Ji SJ. Metal-Free Synthesis of N-(Carboselenoate) Benzimidazolones by Cascade Cyclization of ortho-Diisocyanoarenes and Selenosulfonates. Org Lett 2019; 21:7687-7691. [PMID: 31334663 DOI: 10.1021/acs.orglett.9b01886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A facile synthesis of N-(carboselenoate) benzimidazolones through metal-free reactions of ortho-diisocyanoarenes with selenosulfonates is reported here. The desired products are obtained in moderate to good yields with good functional group compatibility. The ortho-diisocyanoarenes are applied to the construction of 2-benzimidazolone derivatives for the first time.
Collapse
Affiliation(s)
- Yi Fang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Can Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
3
|
Gomez-Cambronero J, Ganesan R. Targeting Phospholipase D Genetically and Pharmacologically for Studying Leukocyte Function. Methods Mol Biol 2018; 1835:297-314. [PMID: 30109659 DOI: 10.1007/978-1-4939-8672-9_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phospholipase D (PLD), is a protein that breaks down phospholipids, maintaining structural integrity and remodeling of cellular or intracellular membranes, as well as mediating protein trafficking and cytoskeletal dynamics during cell motility. One of the reaction products of PLD action is phosphatidic acid (PA). PA is a mitogen involved in a large variety of physiological cellular functions, such as cell growth, cell cycle progression, and cell motility. We have chosen as cell models the leukocyte polymorphonuclear neutrophil and the macrophage as examples of cell motility. We provide a three-part method for targeting PLD genetically and pharmacologically to study its role in cell migration. In the first part, we begin with genetically deficient mice PLD1-KO and PLD2-KO. We describe bone marrow neutrophil (BMN) isolation; BMN is labeled fluorescently and can be used for studying tissue-damaging neutrophilia in ischemia-reperfusion injury (IRI). In the second part, we begin also with PLD1-KO and PLD2-KO and prepare bone marrow-derived macrophages (BMDM), first from monocytes and then inducing macrophage differentiation in culture with continuous incubation of cytokines. We use BMDM to find experimentally if PLD woul play a role in cholesterol phagocytosis, which is the first step in atherosclerosis progression. In the third part, we study PLD function in BMN and BMDM with PLD enzyme pharmacological inhibitors instead of genetically deficient mice, to ascertain the particular contributions of isoforms PLD1 and PLD2 on leukocyte function. By using the three-step thorough approach, we could understand the molecular underpinning of PLD in the pathological conditions indicated above, IRI-neutrophilia and atherosclerosis.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA.
| | - Ramya Ganesan
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH, USA
| |
Collapse
|
4
|
Abstract
Phospholipase D (PLD) enzymes are one source of receptor-generated phosphatidic acid (PtdOH),which may subsequently be metabolized to diacylglycerol (DAG) and lysophosphatidic acid. There are other pathways that lead to PtdOH generation, but differences in pathways and in the acyl composition of the products seem to provide some specificity. Both direct and indirect inhibitors of PLD activity have been identified despite a long-held suspicion that this pathway was undruggable. The identification of raloxifene and halopemide as direct inhibitors was followed by the systematic development of isoenzyme-preferring compounds that have been used to further differentiate the functions of PLD1 and PLD2. PLD2 in host cells has been associated with viral entry processes and innate immune response pathways such that inhibition blocks efficient infection. This PLD2 pathway has been linked to autophagy via AKT kinases. As a potential target in antiretroviral therapy, PLD1 works through the CAD enzyme (which contains carbamoyl aspartate synthase, aspartate transcarbamylase and dihydro-orotase domains) to modulate pyrimidine biosynthesis. PLD activity and expression have been shown to be upregulated in several types of human cancers, in which PLD enzymes function downstream of a variety of known oncogenes. Inhibition of PtdOH production has a marked effect on tumorigenesis and malignant invasion. PLD1, PLD2 and PLD3 have each been suggested to have a role in Alzheimer disease and other neurodegenerative conditions, but a mechanism has not yet emerged to explain the roles of these proteins in central nervous system pathophysiology.
Lipid second messengers such as phosphatidic acid (PtdOH) have a role in a wide range of pathological processes, and phospholipase D (PLD) enzymes are one of the major sources of signal-activated PtdOH generation. In this Review, Brown, Thomas and Lindsley discuss the development of PLD inhibitors, with a focus on isoform-specific inhibitors, and their potential applications in the treatment of cancer, neurodegeneration and infection. Lipid second messengers have essential roles in cellular function and contribute to the molecular mechanisms that underlie inflammation, malignant transformation, invasiveness, neurodegenerative disorders, and infectious and other pathophysiological processes. The phospholipase D (PLD) isoenzymes PLD1 and PLD2 are one of the major sources of signal-activated phosphatidic acid (PtdOH) generation downstream of a variety of cell-surface receptors, including G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and integrins. Recent advances in the development of isoenzyme-selective PLD inhibitors and in molecular genetics have suggested that PLD isoenzymes in mammalian cells and pathogenic organisms may be valuable targets for the treatment of several human diseases. Isoenzyme-selective inhibitors have revealed complex inter-relationships between PtdOH biosynthetic pathways and the role of PtdOH in pathophysiology. PLD enzymes were once thought to be undruggable owing to the ubiquitous nature of PtdOH in cell signalling and concerns that inhibitors would be too toxic for use in humans. However, recent promising discoveries suggest that small-molecule isoenzyme-selective inhibitors may provide novel compounds for a unique approach to the treatment of cancers, neurodegenerative disorders and other afflictions of the central nervous system, and potentially serve as broad-spectrum antiviral and antimicrobial therapeutics.
Collapse
|
5
|
Xin CF, Kim HS, Sato A, Lee HJ, Lee YW, Pyo KH, Shin EH. In vitro inhibition of Toxoplasma gondii by the anti-malarial candidate, 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol. Parasitol Int 2016; 65:494-9. [PMID: 27380994 DOI: 10.1016/j.parint.2016.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
An anti-malarial candidate, 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251), was studied to characterize its potential as a novel anti-Toxoplasma gondii drug. In the present study, IC50 and LC50 of N-251 on host cells and T. gondii were compared to those of artemisinin and sulfadiazine. The IC50 on Huh-7 cells was 10.19μg/ml, 67.69μg/ml and 310.17μg/ml for N-251, artemisinin, and sulfadiazine, respectively. The LC50 for anti-T. gondii effect was shown to be 1.11μg/ml, 5.79μg/ml, and 5.45μg/ml for N-251, artemisinin and sulfadiazine, respectively. N-251 concentration causing complete parasiticidal effect with minimal cytotoxicity on host cells was determined to be 5μg/ml. Additionally, the anti-T. gondii effect of N-251 was confirmed by ultrastructural changes, loss of organelles, degenerated morphology and the increase of amylopectin as detected by transmission electron microscope (TEM). Accordingly, the present study suggests that the anti-malarial synthetic endoperoxide, N-251, is an emerging drug candidate more effective than artemisinin and sulfadiazine.
Collapse
Affiliation(s)
- Chun-Feng Xin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - Hye-Sook Kim
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Akira Sato
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Hak-Jae Lee
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - You-Won Lee
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - Kyoung-Ho Pyo
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea
| | - Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 110-799, Republic of Korea; Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea.
| |
Collapse
|
7
|
Chevalier F, Maréchal É. [How independent pharmacological screenings in plants and humans led to the discovery of a new family of lipid metabolism inhibitors]. Med Sci (Paris) 2015; 31:320-7. [PMID: 25855286 DOI: 10.1051/medsci/20153103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In eukaryotic cells, phosphatidic acid (PA) and diacylglycerol (DAG), are at the origin of all membrane glycerolipids. Their interconversion is achieved by dephosphorylation of PA and phosphorylation of DAG: they form therefore a metabolic hub. PA and DAG are also known to be versatile signaling molecules. Two independent pharmacological screenings conducted on plant and human targets, led to the discovery of a new family of compounds acting on enzymes binding to either PA or DAG, in biological contexts that seemed initially independent. On the one hand, in plants, monogalactosyldiacylglycerol synthases (MGDG synthases or MGD) are responsible for the synthesis of MGDG, which is the most profuse lipid of photosynthetic membranes, and thus essential for metabolism and development. MGD use DAG as substrate. On the other hand, in mammals, phospholipases D (PLD), that produce PA, are involved in a variety of signaling cascades that control a broad spectrum of cellular functions, and play a role in the development of cancers. The two independent pharmacological screenings described in this review aimed to identify inhibitory molecules of either MGD of the plant model Arabidopsis, or human PLD. In both cases, the obtained molecules are piperidinyl-benzimidazolone derivatives, thereby allowing to propose this family of molecules as a novel source of inspiration for the search of compounds interfering with glycerolipid metabolism, that could be useful for other biological and therapeutics contexts.
Collapse
Affiliation(s)
- Florian Chevalier
- Laboratoire de physiologie cellulaire végétale, UMR 5168, CNRS-CEA-INRA-université Grenoble Alpes, 17 rue des Martyrs, 38054 Grenoble Cedex, France
| | - Éric Maréchal
- Laboratoire de physiologie cellulaire végétale, UMR 5168, CNRS-CEA-INRA-université Grenoble Alpes, 17 rue des Martyrs, 38054 Grenoble Cedex, France
| |
Collapse
|