1
|
Russo C, Humphries R. Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics (Basel) 2023; 12:1700. [PMID: 38136734 PMCID: PMC10740869 DOI: 10.3390/antibiotics12121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The rapid emergence of multi-drug resistant Gram-negative pathogens has driven the introduction of novel β-lactam combination agents (BLCs) to the antibiotic market: ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and sulbactam-durlobactam. These agents are equipped with innovative mechanisms that confer broad Gram-negative activity, notably against certain challenging carbapenemases. While their introduction offers a beacon of hope, clinical microbiology laboratories must navigate the complexities of susceptibility testing for these agents due to their diverse activity profiles against specific β-lactamases and the possibility of acquired resistance mechanisms in some bacterial isolates. This review explores the complexities of these novel antimicrobial agents detailing the intricacies of their application, providing guidance on the nuances of susceptibility testing, interpretation, and result reporting in clinical microbiology laboratories.
Collapse
Affiliation(s)
| | - Romney Humphries
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
2
|
Contreras-Gómez MJ, Martinez JRW, Rivas L, Riquelme-Neira R, Ugalde JA, Wozniak A, García P, Munita JM, Olivares-Pacheco J, Alcalde-Rico M. Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. Front Pharmacol 2022; 13:1007162. [PMID: 36263116 PMCID: PMC9574371 DOI: 10.3389/fphar.2022.1007162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the pathogens that urgently needs new drugs and new alternatives for its control. The primary strategy to combat this bacterium is combining treatments of beta-lactam with a beta-lactamase inhibitor. The most used combinations against P. aeruginosa are ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T). Although mechanisms leading to CZA and C/T resistance have already been described, among which are the resistance-nodulation-division (RND) efflux pumps, the role that these extrusion systems may play in CZA, and C/T baseline susceptibility of clinical isolates remains unknown. For this purpose, 161 isolates of non-carbapenemase-producing (Non-CP) CRPA were selected, and susceptibility tests to CZA and C/T were performed in the presence and absence of the RND efflux pumps inhibitor, Phenylalanine-arginine β-naphthylamide (PAβN). In the absence of PAβN, C/T showed markedly higher activity against Non-CP-CRPA isolates than observed for CZA. These results were even more evident in isolates classified as extremely-drug resistant (XDR) or with difficult-to-treat resistance (DTR), where CZA decreased its activity up to 55.2% and 20.0%, respectively, whereas C/T did it up to 82.8% (XDR), and 73.3% (DTR). The presence of PAβN showed an increase in both CZA (37.6%) and C/T (44.6%) activity, and 25.5% of Non-CP-CRPA isolates increased their susceptibility to these two combined antibiotics. However, statistical analysis showed that only the C/T susceptibility of Non-CP-CRPA isolates was significantly increased. Although the contribution of RND activity to CZA and C/T baseline susceptibility was generally low (two-fold decrease of minimal inhibitory concentrations [MIC]), a more evident contribution was observed in a non-minor proportion of the Non-CP-CRPA isolates affected by PAβN [CZA: 25.4% (15/59); C/T: 30% (21/70)]. These isolates presented significantly higher MIC values for C/T. Therefore, we conclude that RND efflux pumps are participating in the phenomenon of baseline susceptibility to CZA and, even more, to C/T. However, the genomic diversity of clinical isolates is so great that deeper analyzes are necessary to determine which elements are directly involved in this phenomenon.
Collapse
Affiliation(s)
- María José Contreras-Gómez
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José R. W. Martinez
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Aniela Wozniak
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - José M. Munita
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Manuel Alcalde-Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| |
Collapse
|
3
|
In search for a synergistic combination against pandrug-resistant A. baumannii; methodological considerations. Infection 2022; 50:569-581. [PMID: 34982411 DOI: 10.1007/s15010-021-01748-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Pending approval of new antimicrobials, synergistic combinations are the only treatment option against pandrug-resistant A. baumannii (PDRAB). Considering the lack of a standardized methodology, the aim of this manuscript is to systematically review the methodology and discuss unique considerations for assessing antimicrobial combinations against PDRAB. METHODS Post-hoc analysis of a systematic review (conducted in PubMed and Scopus from inception to April 2021) of studies evaluating antimicrobial combination against A. baumannii, based on antimicrobials that are inactive in vitro alone. RESULTS Eighty-four publications were reviewed, using a variety of synergy testing methods, including; gradient-based methods (n = 11), disk-based methods (n = 6), agar dilution (n = 2), checkerboard assay (n = 44), time-kill assay (n = 50), dynamic in vitro PK/PD models (n = 6), semi-mechanistic PK/PD models (n = 5), and in vivo animal models (n = 11). Several variations in definitions of synergy and interpretation of each method were observed and are discussed. Challenges related to testing combinations of antimicrobials that are inactive alone (with regards to concentrations at which the combinations are assessed), as well as other considerations (assessment of stasis vs killing, clinical relevance of re-growth in vitro after initial killing, role of in vitro vs in vivo conditions, challenges of clinical testing of antimicrobial combinations against PDRAB infections) are discussed. CONCLUSION This review demonstrates the need for consensus on a standardized methodology and clinically relevant definitions for synergy. Modifications in the methodology and definitions of synergy as well as a roadmap for further development of antimicrobial combinations against PDRAB are proposed.
Collapse
|