1
|
Sarkar M, Sarkar J. Therapeutic drug monitoring in tuberculosis. Eur J Clin Pharmacol 2024; 80:1659-1684. [PMID: 39240337 DOI: 10.1007/s00228-024-03749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Therapeutic drug monitoring (TDM) is a standard clinical procedure that uses the pharmacokinetic and pharmacodynamic parameters of the drug in the body to determine the optimal dose. The pharmacokinetic variability of the drug(s) is a significant contributor to poor treatment outcomes, including the development of acquired drug resistance. TDM aids in dose optimization and improves outcomes while lessening drug toxicity. TDM is used to manage patients with tuberculosis (TB) who exhibit a slow response to therapy, despite good compliance and drug-susceptible organisms. Additional indications include patients at risk of malabsorption or delayed absorption of TB drugs and patients with drug-drug interaction and drug toxicity, which confirm compliance with therapy. TDM usually requires two blood samples: the 2 h and the 6 h post-dose. This narrative review will discuss the pharmacokinetics and pharmacodynamics of TB drugs, determinants of poor response to therapy, indications of TDM, methods of performing TDM, and its interpretations. METHODS This is a narrative review. We searched PubMed, Embase, and the CINAHL from inception to April 2024. We used the following search terms: tuberculosis, therapeutic drug monitoring, anti-TB drugs, pharmacokinetics, pharmacodynamics, limited sample strategies, diabetes and TB, HIV and TB, and multidrug-resistant TB. All types of articles were selected. RESULTS TDM is beneficial in managing TB, especially in patients with slow responses, drug-resistance TB, recurrent TB, and comorbidities such as diabetes mellitus and human immunodeficiency virus infection. CONCLUSION TDM is beneficial for improving outcomes, reducing the risk of acquired drug resistance, and avoiding side effects.
Collapse
Affiliation(s)
- M Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, 171001, Himachal Pradesh, India.
| | - J Sarkar
- MRes Neuroscience, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Zhu Y, Forsman LD, Chen C, Zhang H, Shao G, Wang S, Wang S, Xiong H, Bruchfeld J, Wang W, Zhu L, Alffenaar JW, Hu Y. Drug Exposure and Treatment Outcomes in Patients With Multidrug-Resistant Tuberculosis and Diabetes Mellitus: A Multicenter Prospective Cohort Study From China. Clin Infect Dis 2024; 79:524-533. [PMID: 38913750 DOI: 10.1093/cid/ciae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The management of multidrug-resistant tuberculosis (MDR-TB) remains challenging. Treatment outcome is influenced by multiple factors; the specific roles of diabetes and glycemic control remain uncertain. This study aims to assess the impact of glycemic control on drug exposure, to investigate the association between drug exposure and treatment outcomes, and to identify clinically significant thresholds predictive of treatment outcome, among patients with diabetes. METHODS This multicenter prospective cohort study involved patients with confirmed MDR-TB and diabetes. Drug exposure level was estimated by noncompartmental analysis. The minimum inhibitory concentrations (MICs) were determined for the individual Mycobacterium tuberculosis isolates. The influence of poor glycemic control (glycated hemoglobin ≥7%) on drug exposure and the associations between drug exposure and treatment outcome were evaluated by univariate and multivariate analysis. Classification and regression tree analysis was used to identify the drug exposure/susceptibility thresholds. RESULTS Among the 131 diabetic participants, 43 (32.8%) exhibited poor glycemic control. Poor glycemic control was independently associated with decreased exposure to moxifloxacin, linezolid, bedaquiline, and cycloserine, but not clofazimine. Additionally, a higher ratio of drug exposure to susceptibility was found to be associated with a favorable MDR-TB treatment outcome. Thresholds predictive of 6-month culture conversion and favorable outcome were bedaquiline area under the concentration-time curve (AUC)/MIC ≥245 and moxifloxacin AUC/MIC ≥67, demonstrating predictive accuracy in patients, regardless of their glycemic control status. CONCLUSIONS Glycemic control and optimal TB drug exposure are associated with improved treatment outcomes. This dual management strategy should be further validated in randomized controlled trials of patients with MDR-TB and diabetes.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lina Davies Forsman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Cheng Chen
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haoyue Zhang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Sainan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Shanshan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Haiyan Xiong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Judith Bruchfeld
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Weibing Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, Australia
- Department of Clinical Pharmacology, Westmead Hospital, Sydney, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Maranchick NF, Peloquin CA. Role of therapeutic drug monitoring in the treatment of multi-drug resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100444. [PMID: 38708036 PMCID: PMC11067344 DOI: 10.1016/j.jctube.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of mortality worldwide, and resistance to anti-tuberculosis drugs is a challenge to effective treatment. Multi-drug resistant TB (MDR-TB) can be difficult to treat, requiring long durations of therapy and the use of second line drugs, increasing a patient's risk for toxicities and treatment failure. Given the challenges treating MDR-TB, clinicians can improve the likelihood of successful outcomes by utilizing therapeutic drug monitoring (TDM). TDM is a clinical technique that utilizes measured drug concentrations from the patient to adjust therapy, increasing likelihood of therapeutic drug concentrations while minimizing the risk of toxic drug concentrations. This review paper provides an overview of the TDM process, pharmacokinetic parameters for MDR-TB drugs, and recommendations for dose adjustments following TDM.
Collapse
Affiliation(s)
- Nicole F. Maranchick
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Tsai HA, Shih TM, Tsai T, Hu JW, Lai YA, Hsiao JF, Tsai GE. Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:465-474. [PMID: 38711579 PMCID: PMC11070952 DOI: 10.3762/bjnano.15.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024]
Abstract
ᴅ-cycloserine (DCS), an FDA-approved medicine for the treatment of tuberculosis, is also a partial agonist at the glycine recognition site of N-methyl-ᴅ-aspartate (NMDA) receptor and has shown significant treatment efficacy for central nervous system (CNS) disorders including depression, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder. The physicochemical properties of DCS, however, limit the options of formulation and medicinal applications of DCS, and warrants further investigation for the development of CNS therapeutics. Nanocrystals play an important role in pharmaceutic design and development. The properties of nanocrystals are remarkably different from their bulk material counterpart, attributed to the large surface-area-to-volume ratio which can improve the bioavailability. In this study, for the first time, DCS, a highly water-soluble compound, has formed nanocrystals and this was confirmed by scanning electronic microscopy and X-ray powder diffraction. Furthermore, DCS nanocrystals were applied to several formulations to test their stability and then to the in vitro Franz diffusion test with reservoir patch formulation as well as in vivo pharmacokinetics study with enteric capsules. We tested these formulations regarding their nanocrystal physical properties, size effect, and dissolution rate, respectively. We found that DCS nanocrystals showed good performance in the Franz diffusion test and rodent pharmacokinetic studies due to the nanoparticle size and faster dissolution as compared with the commercial DCS powder. These DCS nanocrystal formulations could offer a new approach for the development of an advanced drug delivery system for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hsuan-Ang Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Theodore Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Jhe-Wei Hu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Yi-An Lai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Jui-Fu Hsiao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Hughes J. Pharmacokinetics and Safety of Group A and B Anti-Tuberculosis Drugs Used in Treatment of Rifampicin-Resistant Tuberculosis during Pregnancy and Post-Partum: A Narrative Review. Pathogens 2023; 12:1385. [PMID: 38133270 PMCID: PMC10745846 DOI: 10.3390/pathogens12121385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Recommendations for treatment of rifampicin-resistant tuberculosis (RR-TB) during pregnancy and post-partum now include Group A and B antituberculosis drugs. While pharmacokinetic data for most of these drugs among adults receiving treatment for RR-TB are limited, the data from pregnant patients and their infants are extremely scarce. Existing data suggest that fluoroquinolones, bedaquiline, clofazimine and terizidone may be used safely in pregnancy. Pharmacokinetic exposures, particularly between trimesters, are potentially sub-optimal; however, there is currently no evidence to support dose adjustment during pregnancy. Linezolid poses a potentially serious toxicity risk, particularly as exposures appear to be high in the later stages of pregnancy and post-partum following extended use, but this should be considered alongside the benefits of this extremely effective drug in the treatment of this life-threatening disease. While plenty of questions remain regarding the exposure to Group A and B antituberculosis drugs through breastmilk, existing literature suggests minimal harm to the breastfed infant. Pregnant patients and their infants should be included in therapeutic trials and pharmacokinetic studies of effective antituberculosis drugs.
Collapse
Affiliation(s)
- Jennifer Hughes
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa
| |
Collapse
|