1
|
Mourabiti F, Jouga F, Sakoui S, El Hosayny O, Zouheir Y, Soukri A, El Khalfi B. Mechanisms, therapeutic strategies, and emerging therapeutic alternatives for carbapenem resistance in Gram-negative bacteria. Arch Microbiol 2025; 207:58. [PMID: 39948320 DOI: 10.1007/s00203-025-04252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/04/2025]
Abstract
Carbapenem-resistant Gram-negative bacteria (CR-GNB) have experienced an alarming surge in prevalence in recent years, escalating into a critical global healthcare crisis. As carbapenems represent the last line of defense against such pathogens, infections caused by CR-GNB have become increasingly challenging to treat, given the restricted therapeutic options and heightened mortality risks. The discovery and development of alternative therapeutic strategies that present novel avenues against multi-drug-resistant organisms are gaining increased attention, presenting a pressing need for innovative solutions. Our comprehensive review delves into the multifaceted landscape of carbapenem resistance in Gram-negative bacteria in response to this urgent challenge. The scope of this review aims to provide an up-to-date and in-depth exploration regarding the mode of action of carbapenem and the resisting mechanisms of carbapenem in GNB. Additionally, it discusses the state of the art of some clinical therapies for the treatment of infections caused by CR-GNB. Moreover, it describes several combinational and alternative therapies to combat CR-GNB, including the computational approach of "molecular docking". In light of the conclusions of this review, we call for the implementation of these strategies to develop comprehensive approaches to mitigate carbapenem resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Fatima Mourabiti
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Fatimazahra Jouga
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Otmane El Hosayny
- Applied Language and Culture Studies Laboratory, Faculty of Letters and Human Sciences, Chouaib Doukkali University, 24000, El Jadida, Morocco
| | - Yassine Zouheir
- Laboratory of Molecular Bacteriology, Pasteur Institute, Casablanca, Morocco
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco.
| |
Collapse
|
2
|
Dang J, Yu X, Zhang M, Dang L, Li Z, Shu J. Role of glycosylation in bacterial resistance to carbapenems. World J Microbiol Biotechnol 2025; 41:55. [PMID: 39883281 DOI: 10.1007/s11274-025-04272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs. In recent years, emerging research on the glycosylation of bacterial proteins has highlighted the crucial role of glycans in various bacterial processes, including carbapenem resistance. Given the limited understanding of bacterial glycosylation, its role in in carbapenem resistance may be more pivotal than currently acknowledged. In this review, we summarize the direct and multifunctional role of glycosylation in bacterial resistance as well as the classical and recently reported mechanisms of bacterial carbapenem resistance, focusing on illuminating the potential role of glycosylation in carbapenem resistance. We also discuss the potential of leveraging this knowledge to develop more effective strategies for combating clinically resistant bacteria.
Collapse
Affiliation(s)
- Jing Dang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Xinlu Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Mengyuan Zhang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jian Shu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai Beilu, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Shi Q, Shen S, Tang C, Ding L, Guo Y, Yang Y, Wu S, Han R, Yin D, Hu F. Molecular mechanisms responsible KPC-135-mediated resistance to ceftazidime-avibactam in ST11-K47 hypervirulent Klebsiella pneumoniae. Emerg Microbes Infect 2024; 13:2361007. [PMID: 38801099 PMCID: PMC11172257 DOI: 10.1080/22221751.2024.2361007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Ceftazidime-avibactam resistance attributable to the blaKPC-2 gene mutation is increasingly documented in clinical settings. In this study, we characterized the mechanisms leading to the development of ceftazidime-avibactam resistance in ST11-K47 hypervirulent Klebsiella pneumoniae that harboured the blaKPC-135 gene. This strain possessed fimbriae and biofilm, demonstrating pathogenicity. Compared with the wild-type KPC-2 carbapenemase, the novel KPC-135 enzyme exhibited a deletion of Glu168 and Leu169 and a 15-amino acid tandem repeat between Val262 and Ala276. The blaKPC-135 gene was located within the Tn6296 transposon truncated by IS26 and carried on an IncFII/IncR-type plasmid. Compared to the blaKPC-2-positive cloned strain, only the MIC of ceftazidime increased against blaKPC-135-positive K. pneumoniae and wasn't inhibited by avibactam (MIC 32 μg/mL), while clavulanic acid and vaborbactam demonstrated some inhibition. Kinetic parameters revealed that KPC-135 exhibited a lower Km and kcat/Km with ceftazidime and carbapenems, and a higher (∼26-fold) 50% inhibitory concentration with avibactam compared to KPC-2. The KPC-135 enzyme exerted a detrimental effect on fitness relative to the wild-type strain. Furthermore, this strain possessed hypervirulent determinants, which included the IncHI1B/FIB plasmid with rmpA2 and expression of type 1 and 3 fimbriae. In conclusion, we reported a novel KPC variant, KPC-135, in a clinical ST11-K47 hypervirulent K. pneumoniae strain, which conferred ceftazidime-avibactam resistance, possibly through increased ceftazidime affinity and decreased avibactam susceptibility. This strain simultaneously harboured resistance and virulence genes, posing an elevated challenge in clinical treatment.
Collapse
Affiliation(s)
- Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Chengkang Tang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Yang Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Chen R, Li C, Xu H, Liu R, Ge H, Qiao J, Liu Y, Liu X, Fang L, Shen Y, Guo X. First documentation of a clinical multidrug-resistant Enterobacter chuandaensis ST2493 isolate co-harboring bla NDM-1 and two bla KPC-2 bearing plasmids. Sci Rep 2024; 14:26817. [PMID: 39500966 PMCID: PMC11538481 DOI: 10.1038/s41598-024-78163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The increasing prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection treatment in the clinical setting. In this study, we reported the emergence of carbapenemase in a rare species, Enterobacter chuandaensis, belonging to the Enterobacter cloacae complex (ECC). We elucidated the genetic characteristics of carbapenem-resistant isolate FAHZZU5885, co-harboring blaNDM-1 and blaKPC-2. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and average nucleotide identity (ANI) analysis were used to identify E. chuandaensis. S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting were used to clarify the number and size of the plasmids in FAHZZU5885. Antimicrobial phenotypes were identified by antimicrobial susceptibility testing (AST), and the characteristics of the strain were examined with whole-genome sequencing (WGS). The conjugation experiment and stability assay were conducted to verify the transferability and stability of the plasmid carrying carbapenemase-encoding genes. E. chuandaensis FAHZZU5885 was isolated from a perianal swab of a patient admitted to the ICU. This strain simultaneously carried blaNDM-1 and two blaKPC-2 genes. FAHZZU5885 was resistant to most of the tested antibiotics except for amikacin, tigecycline, and colistin. Two blaKPC-2 were located separately on two different plasmids, the ~ 120 kb IncFIA-IncFII plasmid and the ~ 80 kb IncR plasmid. Both plasmids shared the conserved sequence klcA-korC-ISkpn6-blaKPC-2-ISkpn27-tnpR-tnpA. The blaNDM-1-bearing plasmid had the potential to transfer and can remain stable after successive passages. In addition, the blaNDM-1 was carried on a ~ 80 kb IncFII plasmid with the conserved sequence ISAba125-blaNDM-1-ble-trpF-dsbD-cutA-groS-groL. In summary, this study marks the first report of the multidrug-resistant E. chuandaensis strain FAHZZU5885 harboring two blaKPC-2-bearing plasmids, indicating the potential for the further dissemination of carbapenemase-encoding genes in novel species. The findings contribute to enhancing our understanding of CREC strains, emphasizing the need for continued and comprehensive surveillance of this species.
Collapse
Affiliation(s)
- Ruyan Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenyu Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruishan Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoyu Ge
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Qiao
- Department of Laboratory Medicine, the Eight Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojing Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Fang
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanhao Shen
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Huang X, Shen S, Chang F, Liu X, Yue J, Xie N, Yin L, Hu F, Xiao D. Emergence of KPC-134, a KPC-2 variant associated with ceftazidime-avibactam resistance in a ST11 Klebsiella pneumoniae clinical strain. Microbiol Spectr 2023; 11:e0072523. [PMID: 37772834 PMCID: PMC10580995 DOI: 10.1128/spectrum.00725-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
The emergence of various new Klebsiella pneumoniae carbapenemase (KPC) variants leading to ceftazidime-avibactam treatment failure is a new challenge in current clinical anti-infection treatment. Here, we report a ceftazidime-avibactam-resistant K. pneumoniae 1072-2 clinical strain carrying a novel KPC variant, KPC-134, which differs from KPC-2 by both single mutation (D178A) and 8-amino acid insertions (asp-asp-asn-arg-ala-pro-asn-lys). The results of antimicrobial susceptibility testing showed that the isolate was resistant to meropenem (MIC = 4 mg/L), ceftazidime (MIC ≥ 32 mg/L), cefepime (MIC ≥128 mg/L), aztreonam (MIC ≥128 mg/L), and ceftazidime-avibactam (MIC ≥128 mg/L) but sensitive to imipenem (MIC = 0.5 mg/L), imepenem-relebactam (MIC = 0.5 mg/L), meropenem-vaborbactam (MIC = 2 mg/L), and aztreonam-avibactam (MIC = 4 mg/L). The plasmid containing blaKPC-134 was isolated from K. pneumoniae, and the blaKPC-134 gene was cloned into plasmid pHSG398 and transformed into an Escherichia coli DH5α to observe changes in antimicrobial resistance. The results indicated that the transformant was positive for blaKPC-134 and increased MICs of ceftazidime-avibactam, ceftazidime, cefepime, and aztreonam by 512-fold, 256-fold, 16-fold, and 4-fold, respectively, compared with the recipient. The results of third-generation sequencing showed that the blaKPC-134 gene was carried by a 133,789 bp IncFII-IncR plasmid, and many common resistance genes (including blaCTX-M-65, blaTEM-1B, blaSHV-12, rmtB, and catB4) along with the IS26, tnpR, ISkpn8, ISkpn6-like, and Tn1721 elements were identified. IMPORTANCE The emergence of various new KPC variants leading to ceftazidime-avibactam treatment failure is a new challenge for clinical anti-infection treatment. Here, we describe the characterization of a ceftazidime-avibactam-resistant blaKPC-134-positive Klebsiella pneumoniae clinical strain for the first time. K. pneumoniae bearing with KPC variant often mislead clinical anti-infection treatment because of their unique antimicrobial susceptibility profile and the tendency of conventional carbapenemase assays to give false negative results. Therefore, timely identification of KPC variants and effective anti-infective therapy are key to saving infected patients.
Collapse
Affiliation(s)
- Xiangning Huang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fan Chang
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Liu
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinxi Yue
- Department of Laboratory Medicine, Affiliated Hospital, North Sichuan Medical College, Nanchong, China
| | - Ning Xie
- Department of Laboratory Medicine, Affiliated Hospital, North Sichuan Medical College, Nanchong, China
| | - Lin Yin
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Daiwen Xiao
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Identification of KPC-112 from an ST15 Klebsiella pneumoniae Strain Conferring Resistance to Ceftazidime-Avibactam. mSphere 2022; 7:e0048722. [PMID: 36374086 PMCID: PMC9769832 DOI: 10.1128/msphere.00487-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ceftazidime-avibactam is an effective antibiotic combination of a β-lactam and a β-lactamase inhibitor against Klebsiella pneumoniae-carbapenemase (KPC)-producing Enterobacterales. Despite a relatively low resistance rate, reports of resistance to ceftazidime-avibactam mainly caused by the mutations in KPC have increased in recent years. Here, we report a ceftazidime-avibactam-resistant and carbapenem-susceptible Klebsiella pneumoniae strain carrying a novel KPC variant, KPC-112, which differs from KPC-2 by 4-amino-acid deletions at Ambler positions 166L/167E and 242G/243T. The isolate was identified as K. pneumoniae by a Vitek mass spectrometer (bioMérieux, France). The MICs of antimicrobial agents were determined using broth microdilution susceptibility method. The result showed that the isolate was resistant to ceftazidime-avibactam (MIC = >128 mg/L) but susceptible to imipenem (MIC = 0.5 mg/L), meropenem (MIC = 1 mg/L), and tigecycline (MIC = 2 mg/L). The carbapenemase genes were confirmed by PCR-based sequencing. Plasmid transformation assay showed that the blaKPC-112-positive transformant increased MICs of ceftazidime-avibactam, ceftazidime, and cefepime by at least 256-fold, 128-fold, and 128-fold, respectively, compared with the recipient Escherichia coli DH5α. According to the whole-genome sequencing analysis, many common resistance genes were identified, including blaKPC-112, blaOXA-1, blaCTX-M-15, blaTEM-1B, blaSHV-28, aac(6')Ib-cr, aac(3)-IId, qnrS1, catA2, catB4, and fosA6, and mutations of GyrA (GyrA-83F and GyrA-87A) and ParC (ParC-80I) were also found. Overall, our study highlights the importance of monitoring susceptibility during ceftazidime-avibactam treatment and accurate detection of KPC variants. IMPORTANCE Carbapenem-resistant Enterobacterales (CRE) are one of the most serious antimicrobial resistance problems in the world, listed as an "urgent" threat by the U.S. Centers for Disease Control and Prevention. Among CRE, K. pneumoniae-carbapenemase-producing Klebsiella pneumoniae (KPC-KP) has become a significant health threat due to its rapid transmissibility and high mortality. With the wider clinical use of ceftazidime-avibactam, reports of resistance have increased in recent years even though the overall resistance rate remains relatively low. Among the reported resistance mechanisms are mainly mutations derived from the blaKPC-2 or blaKPC-3 gene. Here, we describe the characterization of a ceftazidime-avibactam-resistant blaKPC-112-positive K. pneumoniae clinical isolate for the first time. A number of Enterobacteriaceae isolates producing these kinds of KPC variants might be missed by conventional antimicrobial susceptibility testing (AST) methods and lead to irrational drug use. So, this study of KPC-112 will help to establish the diversity of KPCs and remind researchers of the challenge of drug resistance and detection brought by the KPC variants.
Collapse
|
7
|
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, Li L. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol Res 2022; 266:127249. [DOI: 10.1016/j.micres.2022.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
8
|
Lipszyc A, Szuplewska M, Bartosik D. How Do Transposable Elements Activate Expression of Transcriptionally Silent Antibiotic Resistance Genes? Int J Mol Sci 2022; 23:8063. [PMID: 35897639 PMCID: PMC9330008 DOI: 10.3390/ijms23158063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The rapidly emerging phenomenon of antibiotic resistance threatens to substantially reduce the efficacy of available antibacterial therapies. Dissemination of resistance, even between phylogenetically distant bacterial species, is mediated mainly by mobile genetic elements, considered to be natural vectors of horizontal gene transfer. Transposable elements (TEs) play a major role in this process-due to their highly recombinogenic nature they can mobilize adjacent genes and can introduce them into the pool of mobile DNA. Studies investigating this phenomenon usually focus on the genetic load of transposons and the molecular basis of their mobility. However, genes introduced into evolutionarily distant hosts are not necessarily expressed. As a result, bacterial genomes contain a reservoir of transcriptionally silent genetic information that can be activated by various transposon-related recombination events. The TEs themselves along with processes associated with their transposition can introduce promoters into random genomic locations. Thus, similarly to integrons, they have the potential to convert dormant genes into fully functional antibiotic resistance determinants. In this review, we describe the genetic basis of such events and by extension the mechanisms promoting the emergence of new drug-resistant bacterial strains.
Collapse
Affiliation(s)
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.L.); (M.S.)
| |
Collapse
|
9
|
Zeng L, Zhang J, Hu K, Li J, Wang J, Yang C, Huang W, Yin L, Zhang X. Microbial Characteristics and Genomic Analysis of an ST11 Carbapenem-Resistant Klebsiella pneumoniae Strain Carrying blaKPC−2 Conjugative Drug-Resistant Plasmid. Front Public Health 2022; 9:809753. [PMID: 35155355 PMCID: PMC8830775 DOI: 10.3389/fpubh.2021.809753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe sequence type 11 (ST11) carbapenem-resistant Klebsiella pneumoniae (CRKP) carrying blaKPC−2 has been widespread all over the world, and it has been reported frequently in China. The blaKPC−2 located on the mobile genetic element brings tremendous pressure to control the spread and outbreak of resistant bacteria. Whole-genome sequencing (WGS) technology can comprehensively and in-depth display the molecular characteristics of drug-resistant bacteria, providing a basis for evaluating the genetic diversity within the CRKP genome.MethodsThe ST11 CRKP in this study was collected in the intensive care unit of a major teaching hospital. PCR and Sanger sequencing confirmed the existence of blaKPC−2. The AST-GN card and the microbroth dilution test were used for antimicrobial susceptibility testing. The transferability of plasmid was verified by a conjugation test. The whole genome is sequenced using the Illumina HiSeq short-read and Oxford Nanopore long-read sequencing technology.ResultsThe studied strain was named CRKP63, which is a multi-drug resistance bacteria, which carries blaKPC−2 and blaSHV−182. Its genome consists of a circular chromosome of 5,374,207 bp and an IncFII plasmid named pKPC-063001 of 359,625 bp. In the drug-resistant plasmid pKPC-063001, the key carbapenem resistance gene blaKPC−2 was located in the genetic context with insertion sequence ISKpn27 upstream and ISKpn6 downstream and bracketed by IS26. The three copies of the IS26–ISKpn27–blaKPC−2–ISKpn6–IS26 unit were present in tandem. blaKPC−2 can be transferred horizontally between other species by conjugation, the complete type IV secretion system (T4SS) structure helps to improve the adaptability of bacteria to the external environment, strengthen the existence of drug-resistant bacteria, and accelerate the spread of drug resistance.ConclusionHigh-throughput sequencing has discovered the different surrounding environments of blaKPC−2, which provides a new idea for further revealing the transmission and inheritance of blaKPC−2 at the molecular level. In order to control the further spread and prevalence of drug-resistant bacteria, we should pay close attention to the changes in the genetic environment of blaKPC−2 and further study the transcription and expression of T4SS.
Collapse
Affiliation(s)
- Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Molecular Biology, Jiaxing Maternal and Child Health Hospital, Jiaxing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhengjiang University School of Medicine, Hangzhou, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lining Yin
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoli Zhang
| |
Collapse
|
10
|
Emergence of Ceftazidime- and Avibactam-Resistant Klebsiella pneumoniae Carbapenemase-Producing Pseudomonas aeruginosa in China. mSystems 2021; 6:e0078721. [PMID: 34726488 PMCID: PMC8562488 DOI: 10.1128/msystems.00787-21] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing Pseudomonas aeruginosa (KPC-PA) has been reported sporadically. However, epidemiological and antimicrobial susceptibility data specific for KPC-PA are lacking. We collected 374 carbapenem-resistant P. aeruginosa (CRPA) isolates from seven hospitals in China from June 2016 to February 2019 and identified the blaKPC-2 gene in 40.4% (n = 151/374) of the isolates. Approximately one-half of all KPC-PA isolates (n = 76/151; 50.3%) were resistant to ceftazidime-avibactam (CAZ-AVI). Combining Kraken2 taxonomy identification and Nanopore sequencing, we identified eight plasmid types, five of which carried blaKPC-2, and 13 combination patterns of these plasmid types. In addition, we identified IS26-ΔTn6296 and Tn1403-like–ΔTn6296 as the two mobile genetic elements that mediated blaKPC-2 transmission. blaKPC-2 plasmid curing in 28 strains restored CAZ-AVI susceptibility, suggesting that blaKPC-2 was the mediator of CAZ-AVI resistance. Furthermore, the blaKPC-2 copy number was found to correlate with KPC expression and, therefore, CAZ-AVI resistance. Taken together, our results suggest that KPC-PA is becoming a clinical threat and that using CAZ-AVI to treat this specific pathogen should be done with caution. IMPORTANCE Previous research has reported several cases of KPC-PA strains and three KPC-encoding P. aeruginosa plasmid types in China. However, the prevalence and clinical significance of KPC-PA are not available. In addition, the susceptibility of the strains to CAZ-AVI remains unknown. Samples in this study were collected from seven tertiary hospitals prior to CAZ-AVI clinical approval in China. Therefore, our results represent a retrospective study establishing the baseline efficacy of the novel β-lactam/β-lactamase combination agent for treating KPC-PA infections. The observed correlation between the blaKPC copy number and CAZ-AVI resistance suggests that close monitoring of the susceptibility of the strain during treatment is required. It would also be beneficial to screen for the blaKPC gene in CRPA strains for antimicrobial surveillance purposes.
Collapse
|
11
|
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital. Microorganisms 2021; 9:microorganisms9040720. [PMID: 33807212 PMCID: PMC8066831 DOI: 10.3390/microorganisms9040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.
Collapse
|
12
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|