1
|
Leski TA, Taitt CR, Colston SM, Bangura U, Holtz A, Yasuda CY, Reynolds ND, Lahai J, Lamin JM, Baio V, Ansumana R, Stenger DA, Vora GJ. Prevalence of malaria resistance-associated mutations in Plasmodium falciparum circulating in 2017–2018, Bo, Sierra Leone. Front Microbiol 2022; 13:1059695. [DOI: 10.3389/fmicb.2022.1059695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionIn spite of promising medical, sociological, and engineering strategies and interventions to reduce the burden of disease, malaria remains a source of significant morbidity and mortality, especially among children in sub-Saharan Africa. In particular, progress in the development and administration of chemotherapeutic agents is threatened by evolved resistance to most of the antimalarials currently in use, including artemisinins.MethodsThis study analyzed the prevalence of mutations associated with antimalarial resistance in Plasmodium falciparum from 95 clinical samples collected from individuals with clinically confirmed malaria at a hospital in Bo, Sierra Leone between May 2017 and December 2018. The combination of polymerase chain reaction amplification and subsequent high throughput DNA sequencing was used to determine the presence of resistance-associated mutations in five P. falciparum genes – pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13. The geographic origin of parasites was assigned using mitochondrial sequences.ResultsRelevant mutations were detected in the pfcrt (22%), pfmdr1 (>58%), pfdhfr (100%) and pfdhps (>80%) genes while no resistance-associated mutations were found in the pfkelch13 gene. The mitochondrial barcodes were consistent with a West African parasite origin with one exception indicating an isolate imported from East Africa.DiscussionDetection of the pfmdr1 NFSND haplotype in 50% of the samples indicated the increasing prevalence of strains with elevated tolerance to artemeter + lumefantrine (AL) threatening the combination currently used to treat uncomplicated malaria in Sierra Leone. The frequency of mutations linked to resistance to antifolates suggests widespread resistance to the drug combination used for intermittent preventive treatment during pregnancy.
Collapse
|
2
|
Njiro BJ, Mutagonda RF, Chamani AT, Mwakyandile T, Sabas D, Bwire GM. Molecular surveillance of chloroquine-resistant Plasmodium falciparum in sub-Saharan African countries after withdrawal of chloroquine for treatment of uncomplicated malaria: a systematic review. J Infect Public Health 2022; 15:550-557. [DOI: 10.1016/j.jiph.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
|
3
|
Ursing J, Johns R, Aydin-Schmidt B, Calçada C, Kofoed PE, Ghanchi NK, Veiga MI, Rombo L. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1005-1011. [PMID: 35137072 PMCID: PMC8969533 DOI: 10.1093/jac/dkac008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 11/14/2022] Open
Abstract
Background Plasmodium falciparum strains that are resistant to standard-dose chloroquine can be treated by higher chloroquine concentrations maintained for a longer time in vivo. Objectives To determine the relative importance of chloroquine concentrations versus exposure time for elimination of chloroquine-susceptible and -resistant P. falciparum in vitro. Methods Chloroquine-susceptible (3D7) and -resistant (FCR3) strains were exposed in vitro to 1, 2, 4, 8, 16 or 32 times their respective 90% inhibitory chloroquine concentrations for 3, 5, 7 or 14 days and then followed until recrudescence, or not, by 42 days after the end of exposure. Results Exposure to chloroquine appeared to eliminate susceptible and resistant parasites, leaving small pyknotic apparently dead parasites. Chloroquine-susceptible and -resistant parasites recrudesced after 3 and 5 days of chloroquine exposure. Recrudescence occurred in one out of four 7 day exposure series but not after 14 days exposure. The median time to recrudescence was 13 to 28 days with a range of 8 to 41 days after the end of exposure. Time to recrudescence after the end of exposure increased with duration of exposure for susceptible and resistant strains (P < 0.001). Time to recrudescence did not correlate with concentrations greater than 1× IC90. Conclusions Chloroquine-susceptible and -resistant P. falciparum probably become dormant. Elimination of dormant parasites is primarily dependent upon the duration of chloroquine exposure. Exposure to effective drug concentrations for 7 days eliminates most parasites in vitro. The results support in vivo data indicating that elimination of chloroquine-resistant P. falciparum correlates with Day 7 chloroquine concentrations.
Collapse
Affiliation(s)
- Johan Ursing
- Projecto de Saúde de Bandim, Indepth Network, Bissau, Guinea-Bissau
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden
- Corresponding author. E-mail:
| | - Rasmus Johns
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Poul-Erik Kofoed
- Projecto de Saúde de Bandim, Indepth Network, Bissau, Guinea-Bissau
- Department of Paediatrics and Adolescent Medicine, Lillebaelt Hospital, University Hospital of Southern Denmark, Kolding, Denmark
| | - Najia Karim Ghanchi
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lars Rombo
- Centre for Clinical Research, Region Sörmland, Eskilstuna, Sweden
- Unit of infectious Diseases, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Maraka M, Akala HM, Amolo AS, Juma D, Omariba D, Cheruiyot A, Opot B, Okello Okudo C, Mwakio E, Chemwor G, Juma JA, Okoth R, Yeda R, Andagalu B. A seven-year surveillance of epidemiology of malaria reveals travel and gender are the key drivers of dispersion of drug resistant genotypes in Kenya. PeerJ 2020; 8:e8082. [PMID: 32201636 PMCID: PMC7073242 DOI: 10.7717/peerj.8082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Malaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance. This study established the role of travel and gender in dispersion of chloroquine resistant genotypes in malaria epidemic zones in Kenya. A total of 1,776 individuals presenting with uncomplicated malaria at hospitals selected from four malaria transmission zones in Kenya between 2008 and 2014 were enrolled in a prospective surveillance study assessing the epidemiology of malaria drug resistance patterns. Demographic and clinical information per individual was obtained using a structured questionnaire. Further, 2 mL of blood was collected for malaria diagnosis, parasitemia quantification and molecular analysis. DNA extracted from dried blood spots collected from each of the individuals was genotyped for polymorphisms in Plasmodium falciparum chloroquine transporter gene (Pfcrt 76), Plasmodium falciparum multidrug resistant gene 1 (Pfmdr1 86 and Pfmdr1 184) regions that are putative drug resistance genes using both conventional polymerase chain reaction (PCR) and real-time PCR. The molecular and demographic data was analyzed using Stata version 13 (College Station, TX: StataCorp LP) while mapping of cases at the selected geographic zones was done in QGIS version 2.18. Chloroquine resistant (CQR) genotypes across gender revealed an association with chloroquine resistance by both univariate model (p = 0.027) and by multivariate model (p = 0.025), female as reference group in both models. Prior treatment with antimalarial drugs within the last 6 weeks before enrollment was associated with carriage of CQR genotype by multivariate model (p = 0.034). Further, a significant relationship was observed between travel and CQR carriage both by univariate model (p = 0.001) and multivariate model (p = 0.002). These findings suggest that gender and travel are significantly associated with chloroquine resistance. From a gender perspective, males are more likely to harbor resistant strains than females hence involved in strain dispersion. On the other hand, travel underscores the role of transport network in introducing spread of resistant genotypes, bringing in to focus the need to monitor gene flow and establish strategies to minimize the introduction of resistance strains by controlling malaria among frequent transporters.
Collapse
Affiliation(s)
- Moureen Maraka
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Hoseah M. Akala
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Asito S. Amolo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
| | - Dennis Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Duke Omariba
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Agnes Cheruiyot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Benjamin Opot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Charles Okello Okudo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Edwin Mwakio
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| |
Collapse
|
5
|
Proof of concept: used malaria rapid diagnostic tests applied for parallel sequencing for surveillance of molecular markers of anti-malarial resistance in Bissau, Guinea-Bissau during 2014-2017. Malar J 2019; 18:252. [PMID: 31349834 PMCID: PMC6660714 DOI: 10.1186/s12936-019-2894-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background Large-scale surveillance of molecular markers of anti-malarial drug resistance is an attractive method of resistance monitoring, to complement therapeutic efficacy studies in settings where the latter are logistically challenging. Methods Between 2014 and 2017, this study sampled malaria rapid diagnostic tests (RDTs), used in routine clinical care, from two health centres in Bissau, Guinea-Bissau. In order to obtain epidemiological insights, RDTs were collected together with patient data on age and sex. A subset of positive RDTs from one of the two sites (n = 2184) were tested for Plasmodium DNA content. Those testing positive for Plasmodium DNA by PCR (n = 1390) were used for library preparation, custom designed dual indexing and next generation Miseq targeted sequencing of Plasmodium falciparum genes pfcrt, pfmdr1, pfdhfr, pfdhps and pfk13. Results The study found a high frequency of the pfmdr1 codon 86N at 88–97%, a significant decrease of the pfcrt wildtype CVMNK haplotype and elevated levels of the pfdhfr/pfdhps quadruple mutant ranging from 33 to 51% between 2014 and 2017. No polymorphisms indicating artemisinin tolerance were discovered. The demographic data indicate a large proportion of young adults (66%, interquartile range 11–28 years) presenting with P. falciparum infections. While a total of 5532 gene fragments were successfully analysed on a single Illumina Miseq flow cell, PCR-positivity from the library preparation varied considerably from 13 to 87% for different amplicons. Furthermore, pre-screening of samples for Plasmodium DNA content proved necessary prior to library preparation. Conclusions This study serves as a proof of concept for using leftover clinical material (used RDTs) for large-scale molecular surveillance, encompassing the inherent complications regarding to methodology and analysis when doing so. Factors such as RDT storage prior to DNA extraction and parasitaemia of the infection are likely to have an effect on whether or not parasite DNA can be successfully analysed, and are considered part of the reason the data yield is suboptimal. However, given the necessity of molecular surveillance of anti-malarial resistance in settings where poor infrastructure, poor economy, lack of educated staff and even surges of political instability remain major obstacles to performing clinical studies, obtaining the necessary data from used RDTs, despite suboptimal output, becomes a feasible, affordable and hence a justifiable method. Electronic supplementary material The online version of this article (10.1186/s12936-019-2894-8) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku EA. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar J 2019; 18:76. [PMID: 30871535 PMCID: PMC6419488 DOI: 10.1186/s12936-019-2716-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine, a previous highly efficacious, easy to use and affordable anti-malarial agent was withdrawn from malaria endemic regions due to high levels of resistance. This review collated evidence from published-reviewed articles to establish prevalence of Pfcrt 76T and Pfmdr-1 86Y alleles in malaria affected countries following official discontinuation of chloroquine use. Methods A review protocol was developed, registered in PROSPERO (#CRD42018083957) and published in a peer-reviewed journal. Article search was done in PubMed, Scopus, Lilacs/Vhl and Embase databases by two experienced librarians (AK, RS) for the period 1990-to-Febuary 2018. Mesh terms and Boolean operators (AND, OR) were used. Data extraction form was designed in Excel spread sheet 2007. Data extraction was done by three reviewers (NL, BB and MO), discrepancies were resolved by discussion. Random effects analysis was done in Open Meta Analyst software. Heterogeneity was established using I2-statistic. Results A total of 4721 citations were retrieved from article search (Pubmed = 361, Lilac/vhl = 28, Science Direct = 944, Scopus = 3388). Additional targeted search resulted in three (03) eligible articles. After removal of duplicates (n = 523) and screening, 38 articles were included in the final review. Average genotyping success rate was 63.6% (18,343/28,820) for Pfcrt K76T and 93.5% (16,232/17,365) for Pfmdr-1 86Y mutations. Prevalence of Pfcrt 76T was as follows; East Africa 48.9% (2528/5242), Southern Africa 18.6% (373/2163), West Africa 58.3% (3321/6608), Asia 80.2% (1951/2436). Prevalence of Pfmdr-1 86Y was; East Africa 32.4% (1447/5722), Southern Africa 36.1% (544/1640), West Africa 52.2% (1986/4200), Asia 46.4% (1276/2217). Over half, 52.6% (20/38) of included studies reported continued unofficial chloroquine use following policy change. Studies done in Madagascar and Kenya reported re-emergence of chloroquine sensitive parasites (IC50 < 30.9 nM). The average time (years) since discontinuation of chloroquine use to data collection was 8.7 ± 7.4. There was high heterogeneity (I2 > 95%). Conclusion The prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites have steadily declined since discontinuation of chloroquine use. However, Pfcrt K76T and Pfmdr-1 N86Y mutations still persist at moderate frequencies in most malaria affected countries.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda.,Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
7
|
Okell LC, Reiter LM, Ebbe LS, Baraka V, Bisanzio D, Watson OJ, Bennett A, Verity R, Gething P, Roper C, Alifrangis M. Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa. BMJ Glob Health 2018; 3:e000999. [PMID: 30397515 PMCID: PMC6202998 DOI: 10.1136/bmjgh-2018-000999] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 11/04/2022] Open
Abstract
Artemether–lumefantrine (AL) and artesunate–amodiaquine (AS-AQ) are the most commonly used artemisinin-based combination therapies (ACT) for treatment of Plasmodium falciparum in Africa. Both treatments remain efficacious, but single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multidrug resistance 1 (Pfmdr1) gene may compromise sensitivity. AL and AS-AQ exert opposing selective pressures: parasites with genotype 86Y, Y184 and 1246Y are partially resistant to AS-AQ treatment, while N86, 184 F and D1246 are favoured by AL treatment. Through a systematic review, we identified 397 surveys measuring the prevalence of Pfmdr1 polymorphisms at positions 86 184 or 1246 in 30 countries in Africa. Temporal trends in SNP frequencies after introduction of AL or AS-AQ as first-line treatment were analysed in 32 locations, and selection coefficients estimated. We examined associations between antimalarial policies, consumption, transmission intensity and rate of SNP selection. 1246Y frequency decreased on average more rapidly in locations where national policy recommended AL (median selection coefficient(s) of −0.083), compared with policies of AS-AQ or both AL and AS-AQ (median s=−0.035 and 0.021, p<0.001 respectively). 86Y frequency declined markedly after ACT policy introduction, with a borderline significant trend for a more rapid decline in countries with AL policies (p=0.055). However, these trends could also be explained by a difference in initial SNP frequencies at the time of ACT introduction. There were non-significant trends for faster selection of N86 and D1246 in areas with higher AL consumption and no trend with transmission intensity. Recorded consumption of AS-AQ was low in the locations and times Pfmdr1 data were collected. SNP trends in countries with AL policies suggest a broad increase in sensitivity of parasites to AS-AQ, by 7–10 years after AL introduction. Observed rates of selection have implications for planning strategies to cycle drugs or use multiple first-line therapies to maintain drug efficacy.
Collapse
Affiliation(s)
- Lucy C Okell
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Lisa Malene Reiter
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lene Sandø Ebbe
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vito Baraka
- Department of Biomedical Sciences, National Institute for Medical Research, Tanga, United Republic of Tanzania
| | - Donal Bisanzio
- RTI International, Washington, District of Columbia, USA
| | - Oliver J Watson
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of San FranciscO, San Francisco, California, USA
| | - Robert Verity
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Peter Gething
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cally Roper
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Goomber S, Mishra N, Anvikar A, Yadav CP, Valecha N. Spatio-temporal distribution of PfMDR1 polymorphism among uncomplicated Plasmodium falciparum malaria cases along international border of north east India. INFECTION GENETICS AND EVOLUTION 2018; 63:285-290. [PMID: 29842979 DOI: 10.1016/j.meegid.2018.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
Abstract
PfMDR1 single nucleotide polymorphisms (SNP) are good correlate markers for antimalarial drug resistance worldwide. Present study is a comprehensive view of screening of PfMDR1 polymorphism to antimalarials practiced with geography and time. Study sites Mizoram, Tripura, Meghalaya chosen are at multivariate drug pressure due to cross border migration and transmission. Mizoram is gateway to south east Asia through Myanmar whereas Tripura, Meghalaya share porous border with Bangladesh. Baseline finger pricked blood stained filter paper for confirmed uncomplicated Plasmodium falciparum infected patients (year 2015) were obtained from National Institute of Malaria Research, New Delhi, India. PfMDR1 polymorphism for codon N86Y, Y184F, D1246Y was determined by PCR-RFLP, further confirmed by sequencing. There observed marked predominance of Plasmodium isolates with PfMDR1 wild type alleles for all codons under study i.e. 86, 184, 1246. Spatially, Plasmodium isolates from Mizoram were most diverse with co-existence of PfMDR1 genotype with NYD, YYD, NFD haplotypes, followed by Tripura. Isolates from Meghalaya were of all NYD haplotype. Reports, referring to screening of PfMDR1 SNPs to CQ/SP/AS-SP across India, were archived. Temporal study show distinct rise in proportion of PfMDR1 wild type N86 allele since introduction of Artemether-Lumefantrine as first line antimalarial. Hence spatio-temporal screening of Plasmodium population with PfMDR1 single nucleotide polymorphism accounts for its association with antimalarial susceptibility and validate PfMDR1 SNPs as antimalarial drug resistant marker.
Collapse
Affiliation(s)
- Shelly Goomber
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India.
| | - Neelima Mishra
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Anup Anvikar
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Chander Prakash Yadav
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| |
Collapse
|
9
|
Nag S, Dalgaard MD, Kofoed PE, Ursing J, Crespo M, Andersen LO, Aarestrup FM, Lund O, Alifrangis M. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci Rep 2017; 7:2398. [PMID: 28546554 PMCID: PMC5445084 DOI: 10.1038/s41598-017-02724-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Genetic polymorphisms in P. falciparum can be used to indicate the parasite's susceptibility to antimalarial drugs as well as its geographical origin. Both of these factors are key to monitoring development and spread of antimalarial drug resistance. In this study, we combine multiplex PCR, custom designed dual indexing and Miseq sequencing for high throughput SNP-profiling of 457 malaria infections from Guinea-Bissau, at the cost of 10 USD per sample. By amplifying and sequencing 15 genetic fragments, we cover 20 resistance-conferring SNPs occurring in pfcrt, pfmdr1, pfdhfr, pfdhps, as well as the entire length of pfK13, and the mitochondrial barcode for parasite origin. SNPs of interest were sequenced with an average depth of 2,043 reads, and bases were called for the various SNP-positions with a p-value below 0.05, for 89.8-100% of samples. The SNP data indicates that artemisinin resistance-conferring SNPs in pfK13 are absent from the studied area of Guinea-Bissau, while the pfmdr1 86 N allele is found at a high prevalence. The mitochondrial barcodes are unanimous and accommodate a West African origin of the parasites. With this method, very reliable high throughput surveillance of antimalarial drug resistance becomes more affordable than ever before.
Collapse
Affiliation(s)
- Sidsel Nag
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark.
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark.
| | - Marlene D Dalgaard
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800, Kgs. Lyngby, Denmark
| | - Poul-Erik Kofoed
- Department of Paediatrics, Kolding Hospital, University of Southern Denmark, 6000, Kolding, Denmark
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Johan Ursing
- Bandim Health Project, Bissau, Guinea-Bissau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marina Crespo
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark
| | - Lee O'Brien Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, 2300, Copenhagen S, Denmark
| | | | - Ole Lund
- Department of Systems Biology, Technical University of Denmark, Kemitorvet Building 208, 2800, Kgs. Lyngby, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 1356, Copenhagen K, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, 2200, Copenhagen N, Denmark
| |
Collapse
|
10
|
Ursing J, Rombo L, Rodrigues A, Kofoed PE. Artemether-Lumefantrine versus Dihydroartemisinin-Piperaquine for Treatment of Uncomplicated Plasmodium falciparum Malaria in Children Aged Less than 15 Years in Guinea-Bissau - An Open-Label Non-Inferiority Randomised Clinical Trial. PLoS One 2016; 11:e0161495. [PMID: 27649561 PMCID: PMC5030079 DOI: 10.1371/journal.pone.0161495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022] Open
Abstract
Background Artemether-lumefantrine (AL) was introduced for treatment of uncomplicated malaria in Guinea-Bissau in 2008. Malaria then resurged and recurrent malaria after treatment with AL and stock-outs of AL were common. This study therefore aimed to assess the efficacy of AL and identify an alternative second line antimalarial. Dihydroartemisinin-piperaquine (DP) was chosen as it has been shown to be safe and efficacious and to reduce the incidence of recurrent malaria. Methods and Findings In a multicentre randomised open-label non-inferiority clinical trial, AL or DP were given over 3 days to children aged 6 months-15 years with uncomplicated P. falciparum mono-infection. Intake was observed and AL was given with milk. Children were seen on days 0, 1, 2 and 3 and then weekly days 7–42. Recurring P. falciparum were classified as recrudescence or new infections by genotyping. Between November 2012 and July 2015, 312 children were randomised to AL (n = 155) or DP (n = 157). The day 42 PCR adjusted per protocol adequate clinical and parasitological responses were 95% and 100% in the AL and DP groups respectively, Mantel-Haenszel weighted odds ratio (OR) 0.22 (95% CI 0–0.68), p = 0.022. In a modified intention to treat analysis in which treatment failures day 0 and reinfections were also considered as treatment failures adequate clinical and parasitological responses were 94% and 97% (OR 0.42 [95% CI, 0.13–1.38], p = 0.15). Parasite clearance and symptom resolution were similar with both treatments. Conclusions Both treatments achieved the WHO recommended efficacy for antimalarials about to be adopted as policy. DP was not inferior to AL for treatment of uncomplicated P. falciparum malaria in Guinea-Bissau. Trial Registration ClinicalTrials.gov NTC01704508
Collapse
Affiliation(s)
- Johan Ursing
- Projecto de Saúde de Bandim, Indepth Network, Bissau, Guinea-Bissau
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Nobels väg 16, 171 65, Stockholm, Sweden
- Department of Infectious Diseases, Danderyds Hospital, Stockholm, Sweden
- * E-mail: (JU); (PEK)
| | - Lars Rombo
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Nobels väg 16, 171 65, Stockholm, Sweden
- Centre for Clinical Research, Sörmland county council, Eskilstuna, Sweden and Uppsala University, Uppsala, Sweden
| | | | - Poul-Erik Kofoed
- Projecto de Saúde de Bandim, Indepth Network, Bissau, Guinea-Bissau
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
- * E-mail: (JU); (PEK)
| |
Collapse
|