1
|
Zhao M, Lamping E, Niimi K, Niimi M, Cannon RD. Functional analysis of Candida albicans Cdr1 through homologous and heterologous expression studies. FEMS Yeast Res 2025; 25:foaf012. [PMID: 40101948 PMCID: PMC11974388 DOI: 10.1093/femsyr/foaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/17/2025] [Accepted: 03/16/2025] [Indexed: 03/20/2025] Open
Abstract
Candida albicans Cdr1 is a plasma membrane ATP-binding cassette transporter encoded by CDR1 that was first cloned 30 years ago in Saccharomyces cerevisiae. Increased expression of Cdr1 in C. albicans clinical isolates results in resistance to azole antifungals due to drug efflux from the cells. Knowledge of Cdr1 structure and function could enable the design of Cdr1 inhibitors that overcome efflux-mediated drug resistance. This article reviews the use of expression systems to study Cdr1. Since the discovery of CDR1 in 1995, 123 studies have investigated Cdr1 using either heterologous or homologous expression systems. The majority of studies have employed integrative transformation and expression in S. cerevisiae. We describe a suite of plasmids with a range of useful protein tags for integrative transformation that enable the creation of tandem-gene arrays stably integrated into the S. cerevisiae genome, and a model for Cdr1 transport function. While expression in S. cerevisiae generates a strong phenotype and high yields of Cdr1, it is a nonnative environment and may result in altered structure and function. Membrane lipid composition and architecture affects membrane protein function and a focus on homologous expression in C. albicans may permit a more accurate understanding of Cdr1 structure and function.
Collapse
Affiliation(s)
- Mengcun Zhao
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Kyoko Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Masakazu Niimi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
3
|
Morschhäuser J. Adaptation of Candida albicans to specific host environments by gain-of-function mutations in transcription factors. PLoS Pathog 2024; 20:e1012643. [PMID: 39495716 PMCID: PMC11534201 DOI: 10.1371/journal.ppat.1012643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The yeast Candida albicans is usually a harmless member of the normal microbiota in healthy persons but is also a major fungal pathogen that can colonize and infect almost every human tissue. A successful adaptation to environmental changes encountered in different host niches requires an appropriate regulation of gene expression. The zinc cluster transcription factors are the largest family of transcriptional regulators in C. albicans and are involved in the control of virtually all aspects of its biology. Under certain circumstances, mutations in these transcription factors that alter their activity and the expression of their target genes confer a selective advantage, which results in the emergence of phenotypically altered variants that are better adapted to new environmental challenges. This review describes how gain-of-function mutations in different zinc cluster transcription factors enable C. albicans to overcome antifungal therapy and to successfully establish itself in specific host niches.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
5
|
Lajarin-Reinares M, Naveira-Souto I, Mallandrich M, Suñer-Carbó J, Llagostera Casas M, Calvo MA, Fernandez-Campos F. Repurposing Disulfiram as an Antifungal Agent: Development of a New Disulfiram Vaginal Mucoadhesive Gel. Pharmaceutics 2023; 15:pharmaceutics15051436. [PMID: 37242678 DOI: 10.3390/pharmaceutics15051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Alternative formulations need to be developed to improve the efficacy of treatments administered via the vaginal route. Mucoadhesive gels with disulfiram, a molecule that was originally approved as an antialcoholism drug, offer an attractive alternative to treat vaginal candidiasis. The aim of the current study was to develop and optimize a mucoadhesive drug delivery system for the local administration of disulfiram. Such formulations were composed of polyethylene glycol and carrageenan to improve the mucoadhesive and mechanical properties and to prolong the residence time in the vaginal cavity. Microdilution susceptibility testing showed that these gels had antifungal activity against Candida albicans, Candida parapsilosis, and Nakaseomyces glabratus. The physicochemical properties of the gels were characterized, and the in vitro release and permeation profiles were investigated with vertical diffusion Franz cells. After quantification, it was determined that the amount of the drug retained in the pig vaginal epithelium was sufficient to treat candidiasis infection. Together, our findings suggest that mucoadhesive disulfiram gels have the potential to be an effective alternative treatment for vaginal candidiasis.
Collapse
Affiliation(s)
- Maria Lajarin-Reinares
- Department of Genetics and Microbiology, Campus Microbiology Unit, Autonomous University of Barcelona, 08193 Bellaterra, Spain
- R & D Development, Reig Jofre Laboratories, 08970 Sant Joan Despí, Spain
| | - Iria Naveira-Souto
- R & D Development, Reig Jofre Laboratories, 08970 Sant Joan Despí, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Montserrat Llagostera Casas
- Department of Genetics and Microbiology, Campus Microbiology Unit, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Maria Angels Calvo
- Department of Animal Health and Anatomy, Faculty of Veterinary, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | | |
Collapse
|
6
|
Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet 2023; 69:77-89. [PMID: 36947241 DOI: 10.1007/s00294-023-01263-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Candida albicans is a commensal organism of the human gastrointestinal tract and a prevalent opportunistic pathogen. It exhibits different morphogenic forms to survive in different host niches with distinct environmental conditions (pH, temperature, oxidative stress, nutrients, serum, chemicals, radiation, etc.) and genetic factors (transcription factors and genes). The different morphogenic forms of C. albicans are yeast, hyphal, pseudohyphal, white, opaque, and transient gray cells, planktonic and biofilm forms of cells. These forms differ in the parameters like cellular phenotype, colony morphology, adhesion to solid surfaces, gene expression profile, and the virulent traits. Each form is functionally distinct and responds discretely to the host immune system and antifungal drugs. Hence, morphogenic plasticity is the key to virulence. In this review, we address the characteristics, the pathogenic potential of the different morphogenic forms and the conditions required for morphogenic transitions.
Collapse
Affiliation(s)
- Priya Prasad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| | - Meena Tippana
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
7
|
Wang H, Ji Z, Feng Y, Yan T, Cao Y, Lu H, Jiang Y. Myriocin enhances the antifungal activity of fluconazole by blocking the membrane localization of the efflux pump Cdr1. Front Pharmacol 2022; 13:1101553. [PMID: 36618949 PMCID: PMC9815617 DOI: 10.3389/fphar.2022.1101553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Extrusion of azoles from the cell, mediated by an efflux pump Cdr1, is one of the most frequently used strategies for developing azole resistance in pathogenic fungi. The efflux pump Cdr1 is predominantly localized in lipid rafts within the plasma membrane, and its localization is sensitive to changes in the composition of lipid rafts. Our previous study found that the calcineurin signal pathway is important in transferring sphingolipids from the inner to the outer membrane. Methods: We investigated multiple factors that enhance the antifungal activity of fluconazole (FLC) using minimum inhibitory concentration (MIC) assays and disk diffusion assays. We studied the mechanism of action of myriocin through qRT-PCR analysis and confocal microscopy analysis. We tested whether myriocin enhanced the antifungal activity of FLC and held therapeutic potential using a mouse infection model. Results: We found that this signal pathway has no function in the activity of Cdr1. We found that inhibiting sphingolipid biosynthesis by myriocin remarkably increased the antifungal activity of FLC with a broad antifungal spectrum and held therapeutic potential. We further found that myriocin potently enhances the antifungal activity of FLC against C. albicans by blocking membrane localization of the Cdr1 rather than repressing the expression of Cdr1. In addition, we found that myriocin enhanced the antifungal activity of FLC and held therapeutic potential. Discussion: Our study demonstrated that blocking the membrane location and inactivating Cdr1 by inhibiting sphingolipids biogenesis is beneficial for enhancing the antifungal activity of azoles against azole-resistant C. albicans due to Cdr1 activation.
Collapse
Affiliation(s)
- Hongkang Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Ji
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanru Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhua Yan
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Lu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanying Jiang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
van Wijlick L, Znaidi S, Hernández-Cervantes A, Basso V, Bachellier-Bassi S, d’Enfert C. Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans. Front Cell Infect Microbiol 2022; 12:960884. [PMID: 36004328 PMCID: PMC9393397 DOI: 10.3389/fcimb.2022.960884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The alternate growth of Candida albicans between a unicellular yeast form and a multicellular hyphal form is crucial for its ability to cause disease. Interestingly, both morphological forms support distinct functions during proliferation in the human host. We previously identified ORF19.217 (C2_08890W_A), encoding a zinc-finger transcription factor of the C2H2 family, in a systematic screen of genes whose overexpression contributes to C. albicans' morphological changes. Conditional overexpression of ORF19.217 with the strong tetracycline-inducible promoter (P TET ) resulted in a hyperfilamentous phenotype. We examined growth of the orf19.217 knockout-mutant in different hypha-inducing conditions and found that the mutant still formed hyphae under standard hypha-inducing conditions. To further investigate the function of Orf19.217 in C. albicans, we combined genome-wide expression (RNA-Seq) and location (ChIP-Seq) analyses. We found that Orf19.217 is involved in regulatory processes comprising hyphal morphogenesis and iron acquisition. Comparative analysis with existing C. albicans hyphal transcriptomes indicates that Orf19.217-mediated filamentation is distinct from a true hyphal program. Further, the orf19.217 knockout-mutant did not show increased sensitivity to iron deprivation, but ORF19.217 overexpression was able to rescue the growth of a hap5-mutant, defective in a subunit of the CCAAT-complex, which is essential for iron acquisition. This suggested that Orf19.217 is involved in regulation of iron acquisition genes during iron deprivation and acts in a parallel pathway to the established CCAAT-complex. Interestingly, the orf19.217-mutant turned out to be defective in its ability to form filaments under iron-deficiency. Taken together our findings propose that the transcription factor Orf19.217 stimulates expression of the hyphal regulators EFG1 and BRG1 to promote filamentous growth under iron deprivation conditions, allowing the fungus to escape these iron-depleted conditions. The transcription factor therefore appears to be particularly important for adaptation of C. albicans to diverse environmental conditions in the human host. In regard to the newly identified functions, we have given the regulator the name Irf1, Iron-dependent Regulator of Filamentation.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis-Belvédère, Tunisia
| | - Arturo Hernández-Cervantes
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Virginia Basso
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
9
|
High MICs for antifungal agents in yeasts from an anthropized lagoon in South America. Microbiol Res 2022; 262:127083. [DOI: 10.1016/j.micres.2022.127083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022]
|
10
|
Brandt P, Gerwien F, Wagner L, Krüger T, Ramírez-Zavala B, Mirhakkak MH, Schäuble S, Kniemeyer O, Panagiotou G, Brakhage AA, Morschhäuser J, Vylkova S. Candida albicans SR-Like Protein Kinases Regulate Different Cellular Processes: Sky1 Is Involved in Control of Ion Homeostasis, While Sky2 Is Important for Dipeptide Utilization. Front Cell Infect Microbiol 2022; 12:850531. [PMID: 35601106 PMCID: PMC9121809 DOI: 10.3389/fcimb.2022.850531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Protein kinases play a crucial role in regulating cellular processes such as growth, proliferation, environmental adaptation and stress responses. Serine-arginine (SR) protein kinases are highly conserved in eukaryotes and regulate fundamental processes such as constitutive and alternative splicing, mRNA processing and ion homeostasis. The Candida albicans genome encodes two (Sky1, Sky2) and the Candida glabrata genome has one homolog (Sky1) of the human SR protein kinase 1, but their functions have not yet been investigated. We used deletion strains of the corresponding genes in both fungi to study their cellular functions. C. glabrata and C. albicans strains lacking SKY1 exhibited higher resistance to osmotic stress and toxic polyamine concentrations, similar to Saccharomyces cerevisiae sky1Δ mutants. Deletion of SKY2 in C. albicans resulted in impaired utilization of various dipeptides as the sole nitrogen source. Subsequent phosphoproteomic analysis identified the di- and tripeptide transporter Ptr22 as a potential Sky2 substrate. Sky2 seems to be involved in Ptr22 regulation since overexpression of PTR22 in the sky2Δ mutant restored the ability to grow on dipeptides and made the cells more susceptible to the dipeptide antifungals Polyoxin D and Nikkomycin Z. Altogether, our results demonstrate that C. albicans and C. glabrata Sky1 protein kinases are functionally similar to Sky1 in S. cerevisiae, whereas C. albicans Sky2, a unique kinase of the CTG clade, likely regulates dipeptide uptake via Ptr22.
Collapse
Affiliation(s)
- Philipp Brandt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Franziska Gerwien
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Lysett Wagner
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Thomas Krüger
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | | | - Mohammad H. Mirhakkak
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Olaf Kniemeyer
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Axel A. Brakhage
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- *Correspondence: Slavena Vylkova,
| |
Collapse
|
11
|
Deciphering the Mrr1/Mdr1 Pathway in Azole Resistance of Candida auris. Antimicrob Agents Chemother 2022; 66:e0006722. [PMID: 35343781 DOI: 10.1128/aac.00067-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Candida auris is an emerging yeast pathogen with a remarkable ability to develop antifungal resistance, in particular to fluconazole and other azoles. Azole resistance in C. auris was shown to result from different mechanisms, such as mutations in the target gene ERG11 or gain-of-function (GOF) mutations in the transcription factor TAC1b and overexpression of the drug transporter Cdr1. The roles of the transcription factor Mrr1 and of the drug transporter Mdr1 in azole resistance is still unclear. Previous works showed that deletion of MRR1 or MDR1 had no or little impact on azole susceptibility of C. auris. However, an amino acid substitution in Mrr1 (N647T) was identified in most C. auris isolates of clade III that were fluconazole resistant. This study aimed at investigating the role of the transcription factor Mrr1 in azole resistance of C. auris. While the MRR1N647T mutation was always concomitant to hot spot ERG11 mutations, MRR1 deletion in one of these isolates only resulted in a modest decrease of azole MICs. However, introduction of the MRR1N647T mutation in an azole-susceptible C. auris isolate from another clade with wild-type MRR1 and ERG11 alleles resulted in significant increase of fluconazole and voriconazole MICs. We demonstrated that this MRR1 mutation resulted in reduced azole susceptibility via upregulation of the drug transporter MDR1 and not CDR1. In conclusion, this work demonstrates that the Mrr1-Mdr1 axis may contribute to C. auris azole resistance by mechanisms that are independent from ERG11 mutations and from CDR1 upregulation.
Collapse
|
12
|
Chen Z, Luo T, Huang F, Yang F, Luo W, Chen G, Cao M, Wang F, Zhang J. Kangbainian Lotion Ameliorates Vulvovaginal Candidiasis in Mice by Inhibiting the Growth of Fluconazole-Resistant Candida albicans and the Dectin-1 Signaling Pathway Activation. Front Pharmacol 2022; 12:816290. [PMID: 35140608 PMCID: PMC8819624 DOI: 10.3389/fphar.2021.816290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an infectious disease caused by Candida species, which affects millions of women worldwide every year. The resistance to available antifungal drugs for clinical treatment is a growing problem. The treatment of refractory VVC caused by azole-resistant Candida is still facing challenges. However, research on new antifungal drugs is progressing slowly. Although a lot of reports on new antifungal drugs, only three new antifungal drugs (Isavuconazole, ibrexafungerp, and rezafungin) and two new formulations of posaconazole were marketed over the last decade. Chinese botanical medicine has advantages in the treatment of drug-resistant VVC, such as outstanding curative effects and low adverse reactions, which can improve patients’ comfort and adherence to therapy. Kangbainian lotion (KBN), a Chinese botanical formulation, has achieved very good clinical effects in the treatment of VVC. In this study, we investigated the antifungal and anti-inflammatory effects of KBN at different doses in fluconazole-resistant (FLC-resistant) VVC model mice. We further studied the antifungal mechanism of KBN against FLC-resistant Candida albicans (C. albicans) and the anti-inflammatory mechanism correlated with the Dectin-1 signaling pathway. In vivo and in vitro results showed that KBN had strong antifungal and anti-inflammatory effects in FLC-resistant VVC, such as inhibiting the growth of C. albicans and vaginal inflammation. Further studies showed that KBN inhibited the biofilm and hypha formation, reduced adhesion, inhibited ergosterol synthesis and the expression of ergosterol synthesis-related genes ERG11, and reduced the expression of drug-resistant efflux pump genes MDR1 and CDR2 of FLC-resistant C. albicans in vitro. In addition, in vivo results showed that KBN reduced the expression of inflammatory factor proteins TNF-α, IL-1β, and IL-6 in vaginal tissues, and inhibited the expression of proteins related to the Dectin-1 signaling pathway. In conclusion, our study revealed that KBN could ameliorate vaginal inflammation in VVC mice caused by FLC-resistance C. albicans. This effect may be related to inhibiting the growth of FLC-resistance C. albicans and Dectin-1 signaling pathway activation.
Collapse
Affiliation(s)
- Zewei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengshuo Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fengke Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuzhen Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanfeng Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengfei Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Jun Zhang, ; Fengyun Wang,
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jun Zhang, ; Fengyun Wang,
| |
Collapse
|
13
|
Maheronnaghsh M, Teimoori A, Dehghan P, Fatahinia M. The evaluation of the overexpression of the ERG-11, MDR-1, CDR-1, and CDR-2 genes in fluconazole-resistant Candida albicans isolated from Ahvazian cancer patients with oral candidiasis. J Clin Lab Anal 2022; 36:e24208. [PMID: 34997991 DOI: 10.1002/jcla.24208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/12/2021] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Resistance to azole drugs has been observed in candidiasis due to their long-term use and poor response to treatment. Resistance to azole drugs in Candida albicans isolates is controlled by several genes including ERG11, CDR1, CDR2, and MDR1. In this study, the expression of the mentioned genes was evaluated in C. albicans isolates susceptible and resistant to fluconazole. METHODS After identifying the Candida isolates using morphological and molecular methods, the minimum inhibitory concentration (MIC) and drug susceptibility were determined using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) method. RNA was then extracted and cDNA was synthesized from 24 C. albicans isolates from patients with cancer. Then, the mean expressions of these genes were compared in two groups using real-time polymerase chain reaction (RT-PCR). RESULTS A total of 74 Candida isolates were obtained from the oral cavity of 61 cancer patients with oral candidiasis. After 24 h, 21.6% of the isolates were fluconazole-resistant, 10.8% were identified as dose-dependent, and the rest of the isolates (67.6%) were fluconazole-sensitive. The mean expressions of the CDR1 and MDR1 genes were significantly higher in the resistant isolates than in the sensitive ones. However, the ERG11 and CDR2 genes were not significantly increased in the resistant isolates. CONCLUSION The increased mean expressions of the CDR1 and MDR1 genes had a greater effect on fluconazole resistance among the drug-resistant strains of C. albicans in chemotherapy patients. It seemed that the accumulation of chemotherapeutic drugs in this organism stimulated some regulatory factors and increased the expression of these two genes and ultimately helped to further increase their expression and resistance to fluconazole.
Collapse
Affiliation(s)
- Mehrnoush Maheronnaghsh
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parvin Dehghan
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Fatahinia
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Lactate Like Fluconazole Reduces Ergosterol Content in the Plasma Membrane and Synergistically Kills Candida albicans. Int J Mol Sci 2021; 22:ijms22105219. [PMID: 34069257 PMCID: PMC8156871 DOI: 10.3390/ijms22105219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic pathogen that induces vulvovaginal candidiasis (VVC), among other diseases. In the vaginal environment, the source of carbon for C. albicans can be either lactic acid or its dissociated form, lactate. It has been shown that lactate, similar to the popular antifungal drug fluconazole (FLC), reduces the expression of the ERG11 gene and hence the amount of ergosterol in the plasma membrane. The Cdr1 transporter that effluxes xenobiotics from C. albicans cells, including FLC, is delocalized from the plasma membrane to a vacuole under the influence of lactate. Despite the overexpression of the CDR1 gene and the increased activity of Cdr1p, C. albicans is fourfold more sensitive to FLC in the presence of lactate than when glucose is the source of carbon. We propose synergistic effects of lactate and FLC in that they block Cdr1 activity by delocalization due to changes in the ergosterol content of the plasma membrane.
Collapse
|
15
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
17
|
Du M, Xuan W, Zhen X, He L, Lan L, Yang S, Wu N, Qin J, Zhao R, Qin J, Lan J, Lu H, Liang C, Li Y, R Hamblin M, Huang L. Antimicrobial photodynamic therapy for oral Candida infection in adult AIDS patients: A pilot clinical trial. Photodiagnosis Photodyn Ther 2021; 34:102310. [PMID: 33901690 DOI: 10.1016/j.pdpdt.2021.102310] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) using methylene blue (MB) plus potassium iodide (KI) has been shown to be effective in killing Candida albicans in many in vitro and in vivo studies, however, there are limited reports of clinical investigations. This study aimed to explore the clinical application of aPDT with MB plus KI for the treatment of oral infection caused by C. albicans in adult acquired immune deficiency syndrome (AIDS) patients. METHODS A total of 21 adult AIDS patients with C. albicans oral candidiasis were divided into two groups according to MB concentration and received two consecutive aPDT treatments. Immediately before and after the aPDT treatments, C. albicans yeast isolates were recovered to measure the colony-forming units per mL (CFU/mL), biofilm formation, and to analyze the 25S rDNA genotype. Patients were assessed for the clinical recovery of oral lesions and improvement of symptoms. RESULTS The Log10 CFU/mL of C. albicans decreased significantly after the second aPDT but not the first aPDT. There was no significant difference between the two MB concentrations. Both aPDT protocols decreased the oral lesions and clinical symptoms with no significant difference after 2-fraction aPDT. The biofilm formation of C. albicans isolates did not change before and after aPDT. The killing efficiency of 2-fraction-aPDT was not associated with either biofilm formation or 25S rDNA genotype. CONCLUSIONS Two-fraction-aPDT with MB plus KI could reduce the number of viable C. albicans fungal cells and improve the clinical symptoms of oral candidiasis in adult AIDS patients, regardless of the biofilm formation or 25S rDNA genotype of infected C. albicans isolates.
Collapse
Affiliation(s)
- Meixia Du
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Weijun Xuan
- Department of Otorhinolaryngology, Guangxi International Zhuang Medical Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530201, China
| | - Xiumei Zhen
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lixia He
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lina Lan
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shanlin Yang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Nianning Wu
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Jinmei Qin
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Rui Zhao
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Jianglong Qin
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Jian Lan
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Huan Lu
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Cuijin Liang
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Yanjun Li
- Fourth People's Hospital of Nanning, Nanning, Guangxi, 530023, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, 530021, China; Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
18
|
Novel ERG11 and TAC1b mutations associated with azole resistance in Candida auris. Antimicrob Agents Chemother 2021; 65:AAC.02663-20. [PMID: 33619054 PMCID: PMC8092887 DOI: 10.1128/aac.02663-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Candida auris is a novel Candida species that has spread in all continents causing nosocomial outbreaks of invasive candidiasis. C. auris has the ability to develop resistance to all antifungal drug classes. Notably, many C. auris isolates are resistant to the azole drug fluconazole, a standard therapy of invasive candidiasis.Azole resistance in C. auris can result from mutations in the azole target gene ERG11 and/or overexpression of the efflux pump Cdr1. TAC1 is a transcription factor controlling CDR1 expression in C. albicans The role of TAC1 homologs in C. auris (TAC1a and TAC1b) remains to be better defined.In this study, we compared sequences of ERG11, TAC1a and TAC1b between a fluconazole-susceptible and five fluconazole-resistant C. auris isolates of clade IV. Among four of the resistant isolates, we identified a similar genotype with concomitant mutations in ERG11 (F444L) and TAC1b (S611P). The simultaneous deletion of tandemly arranged TAC1a/TAC1b resulted in a decrease of minimal inhibitory concentration (MIC) for fluconazole. Introduction of the ERG11 and TAC1b mutations separately and/or combined in the wild-type azole susceptible isolate resulted in a significant increase of azole resistance with a cumulative effect of the two combined mutations. Interestingly, CDR1 expression was not significantly affected by TAC1a/TAC1b deletion or by the presence of the TAC1b S611P mutation, suggesting the existence of Tac1-dependent and Cdr1-independent azole resistance mechanisms.We demonstrated the role of two previously unreported mutations responsible for azole resistance in C. auris, which were a common signature among four azole-resistant isolates of clade IV.
Collapse
|
19
|
Metal Sulfide Nanoparticles Based Phytolectin Scaffolds Inhibit Vulvovaginal Candidiasis Causing Candida albicans. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Amorim-Vaz S, Coste AT, Tran VDT, Pagni M, Sanglard D. Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:658899. [PMID: 37744106 PMCID: PMC10512259 DOI: 10.3389/ffunb.2021.658899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
21
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
22
|
Kirchner FR, LeibundGut-Landmann S. Tissue-resident memory Th17 cells maintain stable fungal commensalism in the oral mucosa. Mucosal Immunol 2021; 14:455-467. [PMID: 32719409 PMCID: PMC7946631 DOI: 10.1038/s41385-020-0327-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/06/2020] [Indexed: 02/04/2023]
Abstract
Keeping a stable equilibrium between the host and commensal microbes to which we are constantly exposed, poses a major challenge for the immune system. The host mechanisms that regulate homeostasis of the microbiota to prevent infection and inflammatory disorders are not fully understood. Here, we provide evidence that CD4+ tissue-resident memory T (TRM) cells act as central players in this process. Using a murine model of C. albicans commensalism we show that IL-17 producing CD69+CD103+CD4+ memory T cells persist in the colonized tissue long-term and independently of circulatory supplies. Consistent with the requirement of Th17 cells for limiting fungal growth, IL-17-producing TRM cells in the mucosa were sufficient to maintain prolonged colonization, while circulatory T cells were dispensable. Although TRM cells were first proposed to protect from pathogens causing recurrent acute infections, our results support a central function of TRM cells in the maintenance of commensalism.
Collapse
Affiliation(s)
- Florian R Kirchner
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 266a, CH-8057, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
23
|
Suchodolski J, Krasowska A. Fructose Induces Fluconazole Resistance in Candida albicans through Activation of Mdr1 and Cdr1 Transporters. Int J Mol Sci 2021; 22:ijms22042127. [PMID: 33669913 PMCID: PMC7924610 DOI: 10.3390/ijms22042127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a pathogenic fungus that is increasingly developing multidrug resistance (MDR), including resistance to azole drugs such as fluconazole (FLC). This is partially a result of the increased synthesis of membrane efflux transporters Cdr1p, Cdr2p, and Mdr1p. Although all these proteins can export FLC, only Cdr1p is expressed constitutively. In this study, the effect of elevated fructose, as a carbon source, on the MDR was evaluated. It was shown that fructose, elevated in the serum of diabetics, promotes FLC resistance. Using C. albicans strains with green fluorescent protein (GFP) tagged MDR transporters, it was determined that the FLC-resistance phenotype occurs as a result of Mdr1p activation and via the increased induction of higher Cdr1p levels. It was observed that fructose-grown C. albicans cells displayed a high efflux activity of both transporters as opposed to glucose-grown cells, which synthesize Cdr1p but not Mdr1p. Additionally, it was concluded that elevated fructose serum levels induce the de novo production of Mdr1p after 60 min. In combination with glucose, however, fructose induces Mdr1p production as soon as after 30 min. It is proposed that fructose may be one of the biochemical factors responsible for Mdr1p production in C. albicans cells.
Collapse
|
24
|
Sprenger M, Brunke S, Hube B, Kasper L. A TRP1-marker-based system for gene complementation, overexpression, reporter gene expression and gene modification in Candida glabrata. FEMS Yeast Res 2020; 20:6027539. [PMID: 33289831 PMCID: PMC7787354 DOI: 10.1093/femsyr/foaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/04/2020] [Indexed: 01/14/2023] Open
Abstract
Although less prevalent than its relative Candida albicans, the yeast Candida glabrata is a successful pathogen of humans, which causes life-threatening candidiasis. It is thus vital to understand the pathogenicity mechanisms and contributing genes in C. glabrata. However, gene complementation as a tool for restoring the function of a previously deleted gene is not standardized in C. glabrata, and it is less frequently used than in C. albicans. In this study, we established a gene complementation strategy using genomic integration at the TRP1 locus. We prove that our approach can not only be used for integration of complementation cassettes, but also for overexpression of markers like fluorescent proteins and the antigen ovalbumin, or of potential pathogenicity-related factors like the biotin transporter gene VHT1. With urea amidolyase Dur1,2 as an example, we demonstrate the application of the gene complementation approach for the expression of sequence-modified genes. With this approach, we found that a lysine-to-arginine mutation in the biotinylation motif of Dur1,2 impairs urea-dependent growth of C. glabrata and C. albicans. Taken together, the TRP1-based gene complementation approach is a valuable tool for investigating novel gene functions and for elucidating their role in the pathobiology of C. glabrata.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
25
|
Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux ME, d’Enfert C, Sanglard D. Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Front Microbiol 2020; 11:591140. [PMID: 33262748 PMCID: PMC7686038 DOI: 10.3389/fmicb.2020.591140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC.
Collapse
Affiliation(s)
- Eric Delarze
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ludivine Brandt
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilie Trachsel
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Claire Pralong
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio Maranzano
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université de Paris, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Dominique Sanglard
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
26
|
Vaitkienė S, Kuliešienė N, Sakalauskaitė S, Bekere L, Krasnova L, Vigante B, Duburs G, Daugelavičius R. Antifungal activity of styrylpyridinium compounds against Candida albicans. Chem Biol Drug Des 2020; 97:253-265. [PMID: 32772494 DOI: 10.1111/cbdd.13777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 02/01/2023]
Abstract
We synthesized a set of 13 new and earlier described styrylpyridinium compounds (N-alkyl styrylpyridinium salts with bromide or tosylate anions) in order to evaluate antifungal activity against C. albicans cells, to assay the possible synergism with fluconazole, and to estimate cytotoxicity to mammalian cells. All compounds were synthesized according to a well-known two-step procedure involving alkylation of γ-picoline with appropriate alkyl bromide and further condensation with substituted benzaldehyde. Compounds with long N-alkyl chains (C18 H37 -C20 H41 ) had no antifungal activity against the cells of all tested C. albicans strains. Other styrylpyridinium compounds were able to inhibit yeast growth at the concentrations of 0.06-16 μg/ml. At fungicidal concentrations, the compound with the CN- group was least toxic to mammalian cells, showed the most effective synergism with fluconazole, and only slightly inhibited the respiration of C. albicans. The compound with the 4'-diethylamino group exhibited the strongest fungicidal properties and effectively blocked the respiration of C. albicans cells. However, toxicity to mammalian cells was also high. Summarizing, the results of our study indicate that styrylpyridinium compounds are promising candidates in the development of new antifungal drugs.
Collapse
Affiliation(s)
- Simona Vaitkienė
- Department of Biochemistry, Vytautas Magnus University, Kaunas, Lithuania
| | - Neringa Kuliešienė
- Department of Biochemistry, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Laura Bekere
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | |
Collapse
|
27
|
Sprenger M, Hartung TS, Allert S, Wisgott S, Niemiec MJ, Graf K, Jacobsen ID, Kasper L, Hube B. Fungal biotin homeostasis is essential for immune evasion after macrophage phagocytosis and virulence. Cell Microbiol 2020; 22:e13197. [PMID: 32083801 DOI: 10.1111/cmi.13197] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
Abstract
Biotin is an important cofactor for multiple enzymes in central metabolic processes. While many bacteria and most fungi are able to synthesise biotin de novo, Candida spp. are auxotrophic for this vitamin and thus require efficient uptake systems to facilitate biotin acquisition during infection. Here we show that Candida glabrata and Candida albicans use a largely conserved system for biotin uptake and regulation, consisting of the high-affinity biotin transporter Vht1 and the transcription factor Vhr1. Both species induce expression of biotin-metabolic genes upon in vitro biotin depletion and following phagocytosis by macrophages, indicating low biotin levels in the Candida-containing phagosome. In line with this, we observed reduced intracellular proliferation of both Candida cells pre-starved of biotin and deletion mutants lacking VHR1 or VHT1 genes. VHT1 was essential for the full virulence of C. albicans during systemic mouse infections, and the lack of VHT1 led to reduced fungal burden in C. glabrata-infected brains and C. albicans-infected brains and kidneys. Together, our data suggest a critical role of Vht1-mediated biotin acquisition for C. glabrata and C. albicans during intracellular growth in macrophages and systemic infections.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Teresa S Hartung
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Stephanie Wisgott
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Maria J Niemiec
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Katja Graf
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
28
|
Li Y, Shan M, Li S, Wang Y, Yang H, Chen Y, Gu B, Zhu Z. Teasaponin suppresses Candida albicans filamentation by reducing the level of intracellular cAMP. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:175. [PMID: 32309322 PMCID: PMC7154437 DOI: 10.21037/atm.2020.01.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Candidiasis has long been a threat to human health, but cytotoxicity and resistance always block the usefulness of antifungal agents. The ability to switch between yeast and hypha is one of the most discussed virulence trait attributes of the human pathogenic fungus Candida albicans. The morphological transition provides a novel target for developing antifungal drugs. The aim of the present study was to explore the activity and mechanism of teasaponin (TS), a generally regarded as safe natural product, in inhibiting filamentation of C. albicans, hoping to provide an experimental basis for its clinical application. Methods The effect of TS on filamentation and biofilm formation of C. albicans was evaluated by XTT reduction assay and microscopy. The level of intracellular cAMP was measured to further explore the underlying mechanism. In addition, cytotoxicity of TS was evaluated by using MTT assay in vitro and Caenorhabditis elegans model in vivo. The potential of TS-resistance induction was tested by a serial passage experiment. Results TS displayed a moderate antifungal activity against the wild type, efflux pump mutant and multi-resistance C. albicans strains, and could effectively retard filamentation and biofilm formation with a low MIC value. Further mechanism investigation revealed that the reduced cAMP level inhibited filamentation and biofilm formation. In addition, TS showed no significant cytotoxicity in vitro or in vivo, and had little potential to develop resistance during long-time induction. Conclusions Our work evaluated the antifungal activity of TS against filamentation and biofilms formation of C. albicans and disclosed the underlying mechanism, which might provide useful clues for the potential clinical application of TS in fighting clinical fungal infections by targeting the virulence factors.
Collapse
Affiliation(s)
- Ying Li
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou 221004, China
| | - Mingzhu Shan
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou 221004, China
| | - Shihui Li
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou 221004, China
| | - Yuechen Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou 214200, China
| | - Huan Yang
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou 221004, China
| | - Ying Chen
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou 221004, China
| | - Bing Gu
- Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou 221004, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou 214200, China
| |
Collapse
|
29
|
Cieslik W, Szczepaniak J, Krasowska A, Musiol R. Antifungal Styryloquinolines as Candida albicans Efflux Pump Inhibitors: Styryloquinolines are ABC Transporter Inhibitors. Molecules 2020; 25:molecules25020345. [PMID: 31952124 PMCID: PMC7024281 DOI: 10.3390/molecules25020345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/21/2022] Open
Abstract
Styrylquinolines are heterocyclic compounds that are known for their antifungal and antimicrobial activity. Metal complexation through hydroxyl groups has been claimed to be a plausible mechanism of action for these types of compounds. A series of novel structures with protected hydroxyl groups have been designed and synthesized to verify the literature data. Their antifungal activity against wild-type Candida albicans strain and mutants with silenced efflux pumps activity has been determined. Combinations with fluconazole revealed synergistic interactions that were dependent on the substitution pattern. These results open a new route for designing active antifungal agents on a styrylquinoline scaffold.
Collapse
Affiliation(s)
- Wioleta Cieslik
- Institute of Chemistry, University of Silesia, 75. Pułku Piechoty 1, 41-500 Chorzów, Poland;
| | - Joanna Szczepaniak
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (J.S.); (A.K.)
| | - Anna Krasowska
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (J.S.); (A.K.)
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, 75. Pułku Piechoty 1, 41-500 Chorzów, Poland;
- Correspondence: ; Tel.: +48‐32‐3497726; Fax: +48‐32‐259‐99‐78
| |
Collapse
|
30
|
Starosta R, de Almeida RFM, Puchalska M, Białońska A, Panek JJ, Jezierska A, Szmigiel I, Suchodolski J, Krasowska A. New anticandidal Cu(i) complexes with neocuproine and ketoconazole derived diphenyl(aminomethyl)phosphane: luminescence properties for detection in fungal cells. Dalton Trans 2020; 49:8528-8539. [DOI: 10.1039/d0dt01162b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anticandidal activity and a complex luminescence in water solutions of the new copper(i) complexes with a ketoconazole derived phosphane ligand.
Collapse
Affiliation(s)
- Radosław Starosta
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
- Centro de Química Estrutural
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural
- Faculdade de Ciências da Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Agata Białońska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | - Aneta Jezierska
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Ida Szmigiel
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | | | - Anna Krasowska
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| |
Collapse
|
31
|
Abstract
Antifungal resistance is an inevitable phenomenon when fungal pathogens are exposed to antifungal drugs. These drugs can be grouped in four distinct classes (azoles, candins, polyenes, and pyrimidine analogs) and are used in different clinical settings. Failures in therapy implicate the sequential or combined use of these different drug classes, which can result in some cases in the development of multidrug resistance (MDR). MDR is particularly challenging in the clinic since it drastically reduces possible treatment alternatives. In this study, we report the rapid development of MDR in Candida lusitaniae in a patient, which became resistant to all known antifungal agents used until now in medicine. To understand how MDR developed in C. lusitaniae, whole-genome sequencing followed by comparative genome analysis was undertaken in sequential MDR isolates. This helped to detect all specific mutations linked to drug resistance and explained the different MDR patterns exhibited by the clinical isolates. Multidrug resistance (MDR) has emerged in hospitals due to the use of several agents administered in combination or sequentially to the same individual. We reported earlier MDR in Candida lusitaniae during therapy with amphotericin B (AmB), azoles, and candins. Here, we used comparative genomic approaches between the initial susceptible isolate and 4 other isolates with different MDR profiles. From a total of 18 nonsynonymous single nucleotide polymorphisms (NSS) in genome comparisons with the initial isolate, six could be associated with MDR. One of the single nucleotide polymorphisms (SNPs) occurred in a putative transcriptional activator (MRR1) resulting in a V668G substitution in isolates resistant to azoles and 5-fluorocytosine (5-FC). We demonstrated by genome editing that MRR1 acted by upregulation of MFS7 (a multidrug transporter) in the presence of the V668G substitution. MFS7 itself mediated not only azole resistance but also 5-FC resistance, which represents a novel resistance mechanism for this drug class. Three other distinct NSS occurred in FKS1 (a glucan synthase gene that is targeted by candins) in three candin-resistant isolates. Last, two other NSS in ERG3 and ERG4 (ergosterol biosynthesis) resulting in nonsense mutations were revealed in AmB-resistant isolates, one of which accumulated the two ERG NSS. AmB-resistant isolates lacked ergosterol and exhibited sterol profiles, consistent with ERG3 and ERG4 defects. In conclusion, this genome analysis combined with genetics and metabolomics helped decipher the resistance profiles identified in this clinical case. MDR isolates accumulated six different mutations conferring resistance to all antifungal agents used in medicine. This case study illustrates the capacity of C. lusitaniae to rapidly adapt under drug pressure within the host.
Collapse
|
32
|
New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Sci Rep 2019; 9:16214. [PMID: 31700024 PMCID: PMC6838151 DOI: 10.1038/s41598-019-52525-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Four new derivatives of ketoconazole (Ke) were synthesized: diphenylphosphane (KeP), and phosphane chalcogenides: oxide (KeOP), sulphide (KeSP) and selenide (KeSeP). These compounds proved to be promising antifungal compounds towards Saccharomyces cerevisiae and Candida albicans, especially in synergy with fluconazole. Simulations of docking to the cytochrome P450 14α-demethylase (azoles’ primary molecular target) proved that the new Ke derivatives are capable of inhibiting this enzyme by binding to the active site. Cytotoxicity towards hACSs (human adipose-derived stromal cells) of the individual compounds was studied and the IC50 values were higher than the MIC50 for C. albicans and S. cerevisiae. KeP and KeOP increased the level of the p21 gene transcript but did not change the level of p53 gene transcript, a major regulator of apoptosis, and decreased the mitochondrial membrane potential. Taken together, the results advocate that the new ketoconazole derivatives have a similar mechanism of action and block the lanosterol 14α-demethylase and thus inhibit the production of ergosterol in C. albicans membranes.
Collapse
|
33
|
Gene Expression Analysis of Key Players Associated with Fluconazole Resistance in Candida albicans. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.88521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Xu J, Liu R, Sun F, An L, Shang Z, Kong L, Yang M. Eucalyptal D Enhances the Antifungal Effect of Fluconazole on Fluconazole-Resistant Candida albicans by Competitively Inhibiting Efflux Pump. Front Cell Infect Microbiol 2019; 9:211. [PMID: 31281800 PMCID: PMC6595430 DOI: 10.3389/fcimb.2019.00211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The frequent emergence of azole-resistant strains has increasingly led azoles to fail in treating candidiasis. Combination with other drugs is a good option to effectively reduce or retard its incidence of resistance. Natural products are a promising synergist source to assist azoles in treating resistant candidiasis. Eucalyptal D (ED), a formyl-phloroglucinol meroterpenoid, is one of the natural synergists, which could significantly enhance the anticandidal activity of fluconazole (FLC) in treating FLC resistant C. albicans. The checkerboard microdilution assay showed their synergistic effect. The agar disk diffusion test illustrated the key role of ED in synergy. The rhodamine 6G (R6G) efflux assay reflected ED could reduce drug efflux, but quantitative reverse transcription PCR analysis revealed the upregulation of CDR1 and CDR2 genes in ED treating group. Efflux pump-deficient strains were hyper-susceptible to ED, thus ED was speculated to be the substrate of efflux pump Cdr1p and Cdr2p to competitively inhibit the excretion of FLC or R6G, which mainly contributed to its synergistic effect.
Collapse
Affiliation(s)
- Jiali Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Ruihuan Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Fujuan Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lin An
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zhichun Shang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
35
|
Shi HZ, Chang WQ, Zhang M, Lou HX. Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation. Chin J Nat Med 2019; 17:209-217. [PMID: 30910057 DOI: 10.1016/s1875-5364(19)30023-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/25/2022]
Abstract
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
Collapse
Affiliation(s)
- Hong-Zhuo Shi
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Wen-Qiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hong-Xiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
36
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
37
|
The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. J Fungi (Basel) 2018; 4:jof4040140. [PMID: 30567300 PMCID: PMC6308932 DOI: 10.3390/jof4040140] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/03/2023] Open
Abstract
Candida albicans, the dimorphic opportunistic human fungal pathogen, is capable of forming highly drug-resistant biofilms in the human host. Formation of biofilm is a multistep and multiregulatory process involving various adaptive mechanisms. The ability of cells in a biofilm to alter membrane lipid composition is one such adaptation crucial for biofilm development in C. albicans. Lipids modulate mixed species biofilm formation in vivo and inherent antifungal resistance associated with these organized communities. Cells in C. albicans biofilms display phase-dependent changes in phospholipid classes and in levels of lipid raft formation. Systematic studies with genetically modified strains in which the membrane phospholipid composition can be manipulated are limited in C. albicans. In this review, we summarize the knowledge accumulated on the impact that alterations in phospholipids may have on the biofilm forming ability of C. albicans in the human host. This review may provide the requisite impetus to analyze lipids from a therapeutic standpoint in managing C. albicans biofilms.
Collapse
|
38
|
Wang T, Shao J, Da W, Li Q, Shi G, Wu D, Wang C. Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism. Front Microbiol 2018; 9:2892. [PMID: 30559726 PMCID: PMC6287112 DOI: 10.3389/fmicb.2018.02892] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Fungal infections caused by Candida albicans and non-albicans Candida [NAC] species are becoming a growing threat in immunodeficient population, people with long-term antibiotic treatment and patients enduring kinds of catheter intervention. The resistance to one or more than one conventional antifungal agents contributes greatly to the widespread propagation of Candida infections. The severity of fungal infection requires the discovery of novel antimycotics and the extensive application of combination strategy. In this study, a group of Candida standard and clinical strains including C. albicans as well as several NAC species were employed to evaluate the antifungal potentials of palmatine (PAL) alone and in combination with fluconazole (FLC)/itraconazole (ITR) by microdilution method, checkerboard assay, gram staining, spot assay, and rhodamine 6G efflux test. Subsequently, the expressions of transporter-related genes, namely CDR1, CDR2, MDR1, and FLU1 for C. albicans, CDR1 and MDR1 for Candida tropicalis and Candida parapsilosis, ABC1 and ABC2 for Candida krusei, CDR1, CDR2, and SNQ2 for Candida glabrata were analyzed by qRT-PCR. The susceptibility test showed that PAL presented strong synergism with FLC and ITR with fractional inhibitory concentration index (FICI) in a range of 0.0049-0.75 for PAL+FLC and 0.0059-0.3125 for PAL+ITR in planktonic cells, 0.125-0.375 for PAL+FLC and 0.0938-0.3125 for PAL+ITR in biofilms. The susceptibility results were also confirmed by gram staining and spot assay. After combinations, a vast quantity of rhodamine 6G could not be pumped out as considerably intracellular red fluorescence was accumulated. Meanwhile, the expressions of efflux-associated genes were evaluated and presented varying degrees of inhibition. These results indicated that PAL was a decent antifungal synergist to promote the antifungal efficacy of azoles (such as FLC and ITR), and the underlying antifungal mechanism might be linked with the inhibition of efflux pumps and the elevation of intracellular drug content.
Collapse
Affiliation(s)
- Tianming Wang
- Laboratory of Biochemistry and Molecular Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Wenyue Da
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
39
|
|
40
|
McColl AI, Bleackley MR, Anderson MA, Lowe RGT. Resistance to the Plant Defensin NaD1 Features Modifications to the Cell Wall and Osmo-Regulation Pathways of Yeast. Front Microbiol 2018; 9:1648. [PMID: 30087664 PMCID: PMC6066574 DOI: 10.3389/fmicb.2018.01648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022] Open
Abstract
Over the last few decades, the emergence of resistance to commonly used antifungal molecules has become a major barrier to effective treatment of recurrent life-threatening fungal diseases. Resistance combined with the increased incidence of fungal diseases has created the need for new antifungals, such as the plant defensin NaD1, with different mechanisms of action to broaden treatment options. Antimicrobial peptides produced in plants and animals are promising new molecules in the arsenal of antifungal agents because they have different mechanisms of action to current antifungals and are often targeted specifically to fungal pathogens (van der Weerden et al., 2013). A key step in the development of novel antifungals is an understanding of the potential for the fungus to develop resistance. Here, we have used the prototypic plant defensin NaD1 in serial passages with the model fungus Saccharomyces cerevisiae to examine the evolution of resistance to plant antifungal peptides. The yeast strains did develop tolerance to NaD1, but it occurred more slowly than to the clinically used antifungal caspofungin. Sequencing the genomes of the strains with increased tolerance failed to identify any ‘hotspot’ mutations associated with increased tolerance to NaD1 and led to the identification of 12 genes that are involved in resistance. Characterization of the strains with increased tolerance to NaD1 also revealed changes in tolerance to abiotic stressors. Resistance developed slowly via an accumulation of single nucleotide mutations and had a fitness penalty associated with it. One of the genes identified FPS1, revealed that there is a common mechanism of resistance to NaD1 that involves the osmotic stress response pathway. These data indicate that it is more difficult to generate resistance to antimicrobial peptides such as NaD1 compared to small molecule antifungals.
Collapse
Affiliation(s)
- Amanda I McColl
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Rohan G T Lowe
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ. Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. PLoS Genet 2018; 14:e1007326. [PMID: 29630599 PMCID: PMC5908203 DOI: 10.1371/journal.pgen.1007326] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Gene duplication facilitates functional diversification and provides greater phenotypic flexibility to an organism. Expanded gene families arise through repeated gene duplication but the extent of functional divergence that accompanies each paralogous gene is generally unexplored because of the difficulty in isolating the effects of single family members. The telomere-associated (TLO) gene family is a remarkable example of gene family expansion, with 14 members in the more pathogenic Candida albicans relative to two TLO genes in the closely-related species C. dubliniensis. TLO genes encode interchangeable Med2 subunits of the major transcriptional regulatory complex Mediator. To identify biological functions associated with each C. albicans TLO, expression of individual family members was regulated using a Tet-ON system and the strains were assessed across a range of phenotypes involved in growth and virulence traits. All TLOs affected multiple phenotypes and a single phenotype was often affected by multiple TLOs, including simple phenotypes such as cell aggregation and complex phenotypes such as virulence in a Galleria mellonella model of infection. No phenotype was regulated by all TLOs, suggesting neofunctionalization or subfunctionalization of ancestral properties among different family members. Importantly, regulation of three phenotypes could be mapped to individual polymorphic sites among the TLO genes, including an indel correlated with two phenotypes, growth in sucrose and macrophage killing. Different selective pressures have operated on the TLO sequence, with the 5’ conserved Med2 domain experiencing purifying selection and the gene/clade-specific 3’ end undergoing extensive positive selection that may contribute to the impact of individual TLOs on phenotypic variability. Therefore, expansion of the TLO gene family has conferred unique regulatory properties to each paralog such that it influences a range of phenotypes. We posit that the genetic diversity associated with this expansion contributed to C. albicans success as a commensal and opportunistic pathogen. Gene duplication is a rapid mechanism to generate additional sequences for natural selection to act upon and confer greater organismal fitness. If additional copies of the gene are beneficial, this process may be repeated to produce an expanded gene family containing many copies of related sequences. Following duplication, individual gene family members may retain functions of the ancestral gene or acquire new functions through mutation. How functional diversification accompanies expansion into large gene families remains largely unexplored due to the difficulty in assessing individual genes in the presence of the remaining family members. Here, we addressed this question using an inducible promoter to regulate expression of individual genes of the TLO gene family in the commensal yeast and opportunistic pathogen Candida albicans, which encode components of a major transcriptional regulator. Induced expression of individual TLOs affected a wide range of phenotypes such that significant functional overlap occurred among TLO genes and most phenotypes were affected by more than one TLO. Induced expression of individual TLOs did not produce massive phenotypic effects in most cases, suggesting that functional overlap among TLO genes may buffer new mutations that arise. Specific sequence variants among the TLO genes correlated with certain phenotypes and these sequence variants did not necessarily correlate with sequence similarity across the entire gene. Therefore, individual TLO family members evolved specific functional roles following duplication that likely reflect a combination of inherited function and new mutation.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Griffin M. Kinney
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Pamela M. Washington
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
42
|
Clinical Implications of Candida Biofilms. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Li S, Shi H, Chang W, Li Y, Zhang M, Qiao Y, Lou H. Eudesmane sesquiterpenes from Chinese liverwort are substrates of Cdrs and display antifungal activity by targeting Erg6 and Erg11 of Candida albicans. Bioorg Med Chem 2017; 25:5764-5771. [DOI: 10.1016/j.bmc.2017.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
|
44
|
Chang W, Li Y, Zheng S, Zhang M, Gao Y, Lou H. Solasodine-3-O-β-d-glucopyranoside is hydrolyzed by a membrane glucosidase into active molecule solasodine against Candida albicans. Food Chem Toxicol 2017; 109:356-362. [PMID: 28919409 DOI: 10.1016/j.fct.2017.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
Antifungal activity of some natural molecules can be abated or blocked by efflux pumps in Candida albicans, which restricts the discovery of potential antifungal agents. Here we found that the steroidal alkaloid solasodine is active against C. albicans efflux pump-deficient strains but inert towards the wild type. However, the glucosylated solasodine-3-O-β-d-glucopyranoside exhibits antifungal activity towards the wild type strain. Further investigation revealed that the entry of solasodine into C. albicans cells is blocked by efflux pumps. Glucosylation provides an alternative access not disturbed by efflux pumps. Once inside cells, the carried glucosylated solasodine is cleaved into the active molecule solasodine by the glucosidase, which is located in cytoplasm membrane and exhibits selective activity against hydrolyzing glucosyl natural products but not against other monosaccharide-substituted products. This glucosidase is not encoded by orf19.4031, considered homologous to steryl-β-glucosidase encoded by the gene EGH1 in Saccharomyces cerevisiae. Our study reveals that glucosylation is an alternative approach for introducing potential antifungal activity into C. albicans cells and overcoming the drug-resistance resulting from hyperactivation of efflux pumps.
Collapse
Affiliation(s)
- Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Ying Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Sha Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Yanhui Gao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China.
| |
Collapse
|
45
|
Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens. Antimicrob Agents Chemother 2017; 61:AAC.00829-17. [PMID: 28674054 PMCID: PMC5571344 DOI: 10.1128/aac.00829-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is a major cause of fungal diseases in humans, and its resistance to available drugs is of concern. In an attempt to identify novel antifungal agents, we initiated a small-scale screening of a library of 199 natural plant compounds (i.e., natural products [NPs]). In vitro susceptibility profiling experiments identified 33 NPs with activity against C. albicans (MIC50s ≤ 32 μg/ml). Among the selected NPs, the sterol alkaloid tomatidine was further investigated. Tomatidine originates from the tomato (Solanum lycopersicum) and exhibited high levels of fungistatic activity against Candida species (MIC50s ≤ 1 μg/ml) but no cytotoxicity against mammalian cells. Genome-wide transcriptional analysis of tomatidine-treated C. albicans cells revealed a major alteration (upregulation) in the expression of ergosterol genes, suggesting that the ergosterol pathway is targeted by this NP. Consistent with this transcriptional response, analysis of the sterol content of tomatidine-treated cells showed not only inhibition of Erg6 (C-24 sterol methyltransferase) activity but also of Erg4 (C-24 sterol reductase) activity. A forward genetic approach in Saccharomyces cerevisiae coupled with whole-genome sequencing identified 2 nonsynonymous mutations in ERG6 (amino acids D249G and G132D) responsible for tomatidine resistance. Our results therefore unambiguously identified Erg6, a C-24 sterol methyltransferase absent in mammals, to be the main direct target of tomatidine. We tested the in vivo efficacy of tomatidine in a mouse model of C. albicans systemic infection. Treatment with a nanocrystal pharmacological formulation successfully decreased the fungal burden in infected kidneys compared to the fungal burden achieved by the use of placebo and thus confirmed the potential of tomatidine as a therapeutic agent.
Collapse
|
46
|
Baral B. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters. ADVANCES IN GENETICS 2017; 98:117-154. [PMID: 28942792 DOI: 10.1016/bs.adgen.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases.
Collapse
|
47
|
Dorsaz S, Coste AT, Sanglard D. Red-Shifted Firefly Luciferase Optimized for Candida albicans In vivo Bioluminescence Imaging. Front Microbiol 2017; 8:1478. [PMID: 28824601 PMCID: PMC5541039 DOI: 10.3389/fmicb.2017.01478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is a major fungal pathogen causing life-threatening diseases in immuno-compromised patients. The efficacy of current drugs to combat C. albicans infections is limited, as these infections have a 40–60% mortality rate. There is a real need for novel therapeutic approaches, but such advances require a detailed knowledge of C. albicans and its in vivo pathogenesis. Additionally, any novel antifungal drugs against C. albicans infections will need to be tested for their in vivo efficacy over time. Fungal pathogenesis and drug-mediated resolution studies can both be evaluated using non-invasive in vivo imaging technologies. In the work presented here, we used a codon-optimized firefly luciferase reporter system for detecting C. albicans in mice. We adapted the firefly luciferase in order to improve its maximum emission intensity in the red light range (600–700 nm) as well as to improve its thermostability in mice. All non-invasive in vivo imaging of experimental animals was performed with a multimodal imaging system able to detect luminescent reporters and capture both reflectance and X-ray images. The modified firefly luciferase expressed in C. albicans (Mut2) was found to significantly increase the sensitivity of bioluminescence imaging (BLI) in systemic infections as compared to unmodified luciferase (Mut0). The same modified bioluminescence reporter system was used in an oropharyngeal candidiasis model. In both animal models, fungal loads could be correlated to the intensity of emitted light. Antifungal treatment efficacies were also evaluated on the basis of BLI signal intensity. In conclusion, BLI with a red-shifted firefly luciferase was found to be a powerful tool for testing the fate of C. albicans in various mice infection models.
Collapse
Affiliation(s)
- Stephane Dorsaz
- Institute of Microbiology, University of LausanneLausanne, Switzerland
| | - Alix T Coste
- Institute of Microbiology, University of LausanneLausanne, Switzerland
| | | |
Collapse
|
48
|
Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 2017; 10:237-245. [PMID: 28814889 PMCID: PMC5546770 DOI: 10.2147/idr.s118892] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans and the emerging non-albicans Candida spp. have significant clinical relevance among many patient populations. Current treatment guidelines include fluconazole as a primary therapeutic option for the treatment of these infections, but it is only fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase in the drug target, and development of compensatory pathways for producing the target sterol, ergosterol. While many mechanisms of resistance observed in C. albicans are also found in the non-albicans species, there are also important and unexpected differences between species. Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the global health threat Candida auris, are largely unknown. In order to preserve the utility of one of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the manner by which Candida spp. manifest resistance to it.
Collapse
Affiliation(s)
- Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
49
|
Ježíková Z, Pagáč T, Pfeiferová B, Bujdáková H, Dižová S, Jančíková I, Gášková D, Olejníková P. Synergy between azoles and 1,4-dihydropyridine derivative as an option to control fungal infections. Antonie van Leeuwenhoek 2017; 110:1219-1226. [PMID: 28593476 DOI: 10.1007/s10482-017-0895-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/29/2017] [Indexed: 12/22/2022]
Abstract
With emerging fungal infections and developing resistance, there is a need for understanding the mechanisms of resistance as well as its clinical impact while planning the treatment strategies. Several approaches could be taken to overcome the problems arising from the management of fungal diseases. Besides the discovery of novel effective agents, one realistic alternative is to enhance the activity of existing agents. This strategy could be achieved by combining existing antifungal agents with other bioactive substances with known activity profiles (combination therapy). Azole antifungals are the most frequently used class of substances used to treat fungal infections. Fluconazole is often the first choice for antifungal treatment. The aim of this work was to study potential synergy between azoles and 1,4-dihydropyridine-2,3,5-tricarboxylate (termed derivative H) in order to control fungal infections. This article points out the synergy between azoles and newly synthesized derivative H in order to fight fungal infections. Experiments confirmed the role of derivative H as substrate/inhibitor of fungal transporter Cdr1p relating to increased sensitivity to fluconazole. These findings, plus decreased expression of ERG11, are responsible for the synergistic effect.
Collapse
Affiliation(s)
- Zuzana Ježíková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Tomáš Pagáč
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Barbora Pfeiferová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovakia
| | - Stanislava Dižová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava 4, Slovakia
| | - Iva Jančíková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha 2, Czech Republic
| | - Dana Gášková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Praha 2, Czech Republic
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| |
Collapse
|
50
|
Gerwien F, Safyan A, Wisgott S, Brunke S, Kasper L, Hube B. The Fungal Pathogen Candida glabrata Does Not Depend on Surface Ferric Reductases for Iron Acquisition. Front Microbiol 2017. [PMID: 28642757 PMCID: PMC5463049 DOI: 10.3389/fmicb.2017.01055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron acquisition is a crucial virulence determinant for many bacteria and fungi, including the opportunistic fungal pathogens Candida albicans and C. glabrata. While the diverse strategies used by C. albicans for obtaining iron from the host are well-described, much less is known about the acquisition of this micronutrient from host sources by C. glabrata – a distant relative of C. albicans with closer evolutionary ties to Saccharomyces cerevisiae, which nonetheless causes severe clinical symptoms in humans. Here we show that C. glabrata is much more restricted than C. albicans in using host iron sources, lacking, for example, the ability to grow on transferrin and hemin/hemoglobin. Instead, C. glabrata is able to use ferritin and non-protein-bound iron (FeCl3) as iron sources in a pH-dependent manner. As in other fungal pathogens, iron-dependent growth requires the reductive high affinity (HA) iron uptake system. Typically highly conserved, this uptake mechanism normally relies on initial ferric reduction by cell-surface ferric reductases. The C. glabrata genome contains only three such putative ferric reductases, which were found to be dispensable for iron-dependent growth. In addition and in contrast to C. albicans and S. cerevisiae, we also detected no surface ferric reductase activity in C. glabrata. Instead, extracellular ferric reduction was found in this and the two other fungal species, which was largely dependent on an excreted low-molecular weight, non-protein ferric reductant. We therefore propose an iron acquisition strategy of C. glabrata which differs from other pathogenic fungi, such as C. albicans, in that it depends on a limited set of host iron sources and that it lacks the need for surface ferric reductases. Extracellular ferric reduction by a secreted molecule possibly compensates for the loss of surface ferric reductase activity in the HA iron uptake system.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Abu Safyan
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Stephanie Wisgott
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany.,Department of Microbial Pathogenicity Mechanisms, Friedrich Schiller UniversityJena, Germany.,Center for Sepsis Control and Care, University HospitalJena, Germany
| |
Collapse
|