1
|
Chen A, Teng C, Wei J, Wu X, Zhang H, Chen P, Cai D, Qian H, Zhu H, Zheng X, Chen X. Gut microbial dysbiosis exacerbates long-term cognitive impairments by promoting intestinal dysfunction and neuroinflammation following neonatal hypoxia-ischemia. Gut Microbes 2025; 17:2471015. [PMID: 40008452 PMCID: PMC11866968 DOI: 10.1080/19490976.2025.2471015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/12/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal hypoxic-ischemic brain damage (HIBD) is considered as a major cause of long-term cognitive impairments in newborns. It has been demonstrated that gut microbiota is closely associated with the prognosis of various neurological disorders. However, the role of microbiota-gut-brain axis on cognitive function following neonatal HIBD remains elusive. In this experiment, the correlation analysis supported the involvement of gut microbial changes following hypoxic-ischemic (HI) insult in the development of long-term cognitive impairments. Subsequent experiment revealed the involvement of the intestinal dysfunction in the hippocampal neuroinflammation and synaptic injury. In causal relationship validation experiments, fecal microbiota transplantation (FMT) from cognitively normal rats could restore gut microbial composition, improve intestinal dysfunction, reduce the serum levels of lipopolysaccharides (LPS) and inflammatory mediators, and alleviate neuroinflammation, synaptic damage and cognitive impairments in neonatal HIBD recipient rats. Conversely, the FMT from neonatal HIBD rats could induce above adverse pathological changes in the normal recipient rats. Moreover, oral administration of anti-inflammatory agent dexamethasone (DEX) exhibited the potential to alleviate these detrimental effects in neonatal HIBD rats, with the efficacy being partly reliant on gut microbiota. Further experiment on the potential molecular mechanisms using RNA sequencing indicated a significant increase in the toll-like receptor 4 (TLR4) gene in the intestinal tissues of neonatal HIBD rats. Additionally, the interventions such as TLR4 inhibitor TLR4-IN-C34 administration, FMT, and oral DEX were demonstrated to modulate intestinal function by inhibiting the LPS/TLR4 signaling pathway, thereby exerting neuroprotective effects. Collectively, these findings underscore the contribution of gut microbial dysbiosis post HI insult in activating the LPS/TLR4 signaling pathway, triggering intestinal inflammation and dysfunction, exacerbating systemic inflammation, and consequently worsening synaptic and cognitive impairments in neonatal HIBD rats. Hence, rectifying gut microbial dysbiosis or regulating intestinal function may represent a promising strategy for alleviating long-term cognitive impairments in neonates affected by HIBD.
Collapse
Affiliation(s)
- Andi Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Chengqian Teng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Jianjie Wei
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xuyang Wu
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Honghong Zhang
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Pinzhong Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Dingliang Cai
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Haitao Qian
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Hui Zhu
- Department of Neonatal Intensive Care Unit, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaohui Chen
- Shengli Clinical Medical College of Fujian Medical University, Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
El-Newary SA, Abd Elkarim AS, Abdelwahed NAM, Omer EA, Elgamal AM, ELsayed WM. Chenopodium murale Juice Shows Anti-Fungal Efficacy in Experimental Oral Candidiasis in Immunosuppressed Rats in Relation to Its Chemical Profile. Molecules 2023; 28:molecules28114304. [PMID: 37298777 DOI: 10.3390/molecules28114304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023] Open
Abstract
Chenopodium murale (Syn. Chenopodiastrum murale) (amaranthaceae) is used in the rural Egypt to treat oral ulcers in newborn children. The current study aimed to discover new natural products suitable for treating candidiasis disease with minimal side effects. Characterization of bioactive compounds by LC-QTOF-HR-MS/MS from Chenopodium murale fresh leaves' juice (CMJ) was carried out in order to elucidate their potential anti-fungal and immunomodulatory effects in oral candidiasis in immunosuppressed rats. An oral ulcer candidiasis model was created in three stages: (i) immunosuppression by drinking dexamethasone (0.5 mg/L) for two weeks; (ii) Candida albicans infection (3.00 × 106 viable cell/mL) for one week; and (iii) treatment with CMJ (0.5 and 1.0 g/kg orally) or nystatin (1,000,000 U/L orally) for one week. Two doses of CMJ exhibited antifungal effects, for example, through a significant reduction in CFU/Petri (236.67 ± 37.86 and 4.33 ± 0.58 CFU/Petri), compared to the Candida control (5.86 × 104 ± 1.21 CFU/Petri), p ≤ 0.001. In addition, CMJ significantly induced neutrophil production (32.92% ± 1.29 and 35.68% ± 1.77) compared to the Candida control level of 26.50% ± 2.44. An immunomodulatory effect of CMJ at two doses appeared, with a considerable elevation in INF-γ (103.88 and 115.91%), IL-2 (143.50, 182.33%), and IL-17 (83.97 and 141.95% Pg/mL) compared with the Candida group. LC-MS/MS analysis operated in negative mode was used for tentative identification of secondary (SM) metabolites based on their retention times and fragment ions. A total of 42 phytoconstituents were tentatively identified. Finally, CMJ exhibited a potent antifungal effect. CMJ fought Candida through four strategies: (i) promotion of classical phagocytosis of neutrophils; (ii) activation of T cells that activate IFN-γ, IL-2, and IL-17; (iii) increasing the production of cytotoxic NO and H2O2 that can kill Candida; and (iv) activation of SOD, which converts superoxide to antimicrobial materials. These activities could be due to its active constituents, which are documented as anti-fungal, or due to its richness in flavonoids, especially the active compounds of kaempferol glycosides and aglycone, which have been documented as antifungal. After repetition on another type of small experimental animal, their offspring, and an experimental large animal, this study may lead to clinical trials.
Collapse
Affiliation(s)
- Samah A El-Newary
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki-Giza-Egypt, Giza 12622, Egypt
| | - Asmaa S Abd Elkarim
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Giza 12622, Egypt
| | - Nayera A M Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Institute, National Research Centre, Giza 12622, Egypt
| | - Elsayed A Omer
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki-Giza-Egypt, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza 12622, Egypt
| | - Wael M ELsayed
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
3
|
Moraes GS, Albach T, Sugio CYC, Cachoeira VS, Kiratcz F, Claudino M, Campagnoli EB, Pochapski MT, Dos Santos FA, Neppelenbroek KH, Urban VM. A novel rat model of denture stomatitis and the role of antibiotics in the development of the disease. Med Mycol 2022; 60:myac092. [PMID: 36441017 DOI: 10.1093/mmy/myac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 01/03/2024] Open
Abstract
This study compared different conditions to establish a rat model of denture stomatitis. Immunocompetent Wistar rats were divided into two groups (n = 35): Tetracycline = administration of 0.83 mg/ml of tetracycline hydrochloride 7 days before induction of denture stomatitis and amoxicillin = administration of 0.156 mg/ml of amoxicillin with clavulanic acid 4 days before induction of denture stomatitis. A suspension of Candida albicans was inoculated on the palate followed by the use of a palatal device contaminated with C. albicans inoculum for 4 days to induce denture stomatitis. As controls, some rats were not submitted to any procedure or used a sterile palatal device for 4 days. The development of denture stomatitis was confirmed by visual analysis, colony-forming units per milliliter (CFU/ml) count, histopathological and immunohistochemical analyses, and through myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) assays. Rats were euthanized right after device removal (T0), 4 (T4), or 6 (T6) days after device removal. Tetracycline improved the development of the disease, with more severe clinical signs at T0. Similar results were observed in the CFU/ml count and in the histometric and immunohistochemical analyses. Higher MPO expression was detected in the palates of the tetracycline group (P = .006). Despite the subtle differences between antibiotics, tetracycline showed better results in inducing and maintaining denture stomatitis for at least 4 days after device removal.
Collapse
Affiliation(s)
| | - Thaís Albach
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Carolina Yoshi Campos Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Falyne Kiratcz
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Marcela Claudino
- Department of Dentistry, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | | | | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | |
Collapse
|
4
|
Moraes GS, Albach T, Sugio CY, de Oliveira FB, Neppelenbroek KH, Urban VM. Experimental animal models for denture stomatitis: A methodological review. Lab Anim 2022; 56:331-343. [PMID: 35072576 DOI: 10.1177/00236772211069249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Denture stomatitis is the most prevalent form of oral candidiasis and the most frequent oral lesion in removable prosthesis wearers. It is characterized by an inflammatory response of the denture-bearing mucosa, especially the palatal mucosa, and its clinical signs include chronic edema and erythema, and papillary hyperplasia. Despite having a multifactorial etiology, its main etiological agent is the infection by Candida albicans. Given its high treatment failure rates, an in vivo model of denture stomatitis should be established to test alternative treatments. The aim of this study is to review the existing denture stomatitis models and to provide an overview of the main methodological differences between them. Over the last 40 years, different animal models were developed in order to study denture stomatitis etiopathogenesis and to assess novel therapies. Many approaches, including the use of antibiotics and immunosuppressors, have to be further investigated in order to establish which protocol is more appropriate and effective for the development of an animal model of denture stomatitis.
Collapse
Affiliation(s)
- Gustavo S Moraes
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Thaís Albach
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Carolina Yc Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Fabio B de Oliveira
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| | - Karin H Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Vanessa M Urban
- Department of Dentistry, 67883State University of Ponta Grossa, State University of Ponta Grossa, Brazil
| |
Collapse
|
5
|
Shao Y, Molestak E, Su W, Stankevič M, Tchórzewski M. Sordarin - the antifungal antibiotic with a unique modus operandi. Br J Pharmacol 2021; 179:1125-1145. [PMID: 34767248 DOI: 10.1111/bph.15724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
Fungal infections cause serious problems in many aspects of human life, in particular infections in immunocompromised patients represent serious problems. Current antifungal antibiotics target various metabolic pathways, predominantly the cell wall or cellular membrane. Numerous compounds are available to combat fungal infections, but their efficacy is far from being satisfactory and some of them display high toxicity. The emerging resistance represents a serious issue as well; hence, there is a considerable need for new anti-fungal compounds with lower toxicity and higher effectiveness. One of the unique antifungal antibiotics is sordarin, the only known compound that acts on the fungal translational machinery per se. Sordarin inhibits protein synthesis at the elongation step of the translational cycle, acting on eukaryotic translation elongation factor 2. In this review, we intend to deliver a robust scientific platform promoting the development of antifungal compounds, in particular focusing on the molecular action of sordarin.
Collapse
Affiliation(s)
- Yutian Shao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China.,Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, PR China
| | - Marek Stankevič
- Department of Organic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie Sklodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
6
|
Hosny K, Asfour H, Rizg W, Alhakamy NA, Sindi A, Alkhalidi H, Abualsunun W, Bakhaidar R, Almehmady AM, Akeel S, Ali S, Alghaith A, Alshehri S, Khallaf R. Formulation, Optimization, and Evaluation of Oregano Oil Nanoemulsions for the Treatment of Infections Due to Oral Microbiota. Int J Nanomedicine 2021; 16:5465-5478. [PMID: 34413644 PMCID: PMC8370598 DOI: 10.2147/ijn.s325625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Natural oil-based nanoemulsions (NEs) have been widely investigated in many diseases that affect the oral cavity. NEs are delivery systems that enhance the solubility of lipid therapeutics and improve their delivery to target sites; they are known as self-nanoemulsifying drug delivery systems (SNEDDSs). The current investigation's aim was to produce an oregano essential oil-based nanoemulsion (OEO-SNEDD) that would have antibacterial and antifungal effects against oral microbiota and improve oral health. Methods Several OEO-SNEDDSs were developed using different percentages of OEO (10%, 14%, and 18%), percentages of a surfactant mixture Pluracare L64:Lauroglycol FCC (18%, 32%, and 36%), Smix ratios (1:2, 1:1, and 2:1), and hydrophilic-lipophilic balances (HLBs) of the surfactant mixture (8, 10, and 12) using the Box‒Behnken design. The optimized concentration of excipients was determined using a pseudoternary phase diagram to obtain the NEs. The formulations were evaluated for their droplet size, stability index, and antibacterial and antifungal activities. Results The NEs had a droplet size of 150 to 500 nm and stability index of 47% to 95%, and the produced formulation reached antibacterial and antifungal inhibition zones of up to 19 and 17 mm, respectively. The Box‒Behnken design was adopted to get the optimum formulation, which was 18% OEO, 36% Smix, 10.29 HLB of Smix, and a 1.25:1 Smix ratio. The optimized formulation had a lower ulcer index compared with various other formulations evaluated in rats. Conclusion This study illustrated that OEO-SNEDDSs can provide good protection against oral microbial infections.
Collapse
Affiliation(s)
- Khaled Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hani Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Waleed Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amal Sindi
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Alkhalidi
- Department of Clinical pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Walaa Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Akeel
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Ali
- Oral diagnostic sciences department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rasha Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
7
|
Alkhalidi HM, Hosny KM, Rizg WY. Oral Gel Loaded by Fluconazole‒Sesame Oil Nanotransfersomes: Development, Optimization, and Assessment of Antifungal Activity. Pharmaceutics 2020; 13:E27. [PMID: 33375740 PMCID: PMC7823766 DOI: 10.3390/pharmaceutics13010027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Candidiasis is one of the frequently encountered opportunistic infections in the oral cavity and can be found in acute and chronic presentations. The study aimed to develop fluconazole-loaded sesame oil containing nanotransfersomes (FS-NTF) by the thin-layer evaporation technique to improve the local treatment of oral candidiasis. Optimization of the formulation was performed using the Box‒Behnken statistical design to determine the variable parameters that influence the vesicle size, entrapment efficiency, zone of inhibition, and ulcer index. Finally, the formulated FS-NTF was embedded within the hyaluronic acid‒based hydrogel (HA-FS-NTF). The rheological behavior of the optimized HA-FS-NTF was assessed and the thixotropic behavior with the pseudoplastic flow was recorded; this is desirable for an oral application. An in vitro release study revealed the rapid release of fluconazole from the HA-FS-NTF. This was significantly higher when compared with the fluconazole suspension and hyaluronic acid hydrogel containing fluconazole. Correspondingly, the ex vivo permeation was also found to be higher in HA-FS-NTF in sheep buccal mucosa (400 μg/cm2) when compared with the fluconazole suspension (122 μg/cm2) and hyaluronic acid hydrogel (294 μg/cm2). The optimized formulation had an inhibition zone of 14.33 ± 0.76 mm and enhanced antifungal efficacy for the ulcer index (0.67 ± 0.29) in immunocompromised animals with Candida infection; these findings were superior to those of other tested formulations. Hence, it can be summarized that fluconazole can effectively be delivered for the treatment of oral candidiasis when it is entrapped in a nanotransfersome carrier and embedded into cross-linked hyaluronic acid hydrogel.
Collapse
Affiliation(s)
- Hala M. Alkhalidi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Abdellatif MM, Khalil IA, Elakkad YE, Eliwa HA, Samir TM, Al-Mokaddem AK. Formulation and Characterization of Sertaconazole Nitrate Mucoadhesive Liposomes for Vaginal Candidiasis. Int J Nanomedicine 2020; 15:4079-4090. [PMID: 32606665 PMCID: PMC7295534 DOI: 10.2147/ijn.s250960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The aim of this study is to develop efficient localized therapy of sertaconazole nitrate for the treatment of vaginal candidiasis. Methods Sertaconazole nitrate-loaded cationic liposomes were prepared by thin-film hydration method and coated with different concentrations of pectin (0.05%, 0.1% and 0.2%) to develop mucoadhesive liposomes. The formulated mucoadhesive vesicles were characterized in terms of morphology, entrapment efficiency, particle size, zeta value, mucoadhesive properties and drug release. The selected formula was incorporated into a gel base and further characterized by an ex vivo permeation study in comparison with conventional sertaconazole gel. Also, the in vivo study was performed to assess the efficacy of sertaconazole mucoadhesive liposomal gel in treating rats with vaginal candidiasis. Results The mucoadhesive liposomes were spherical. Coating liposomes with pectin results in increased entrapment efficiency and particle size compared with uncoated vesicles. On the contrary, zeta values were reduced upon coating liposomes with pectin indicating efficient coating of liposomes with pectin. Mucoadhesive liposomes showed a more prolonged and sustained drug release compared with uncoated liposomes. Ex vivo study results showed that mucoadhesive liposomal gel increased sertaconazole tissue retention and reduced drug tissue penetration. In the invivo study, the mucoadhesive liposomal gel showed a significant reduction in the microbial count with a subsequent reduction in inflammatory responses with the lowest histopathological change compared with conventional gel. Conclusion The study confirmed the potentiality of employing mucoadhesive liposomes as a successful carrier for the vaginal delivery of antifungal drugs.
Collapse
Affiliation(s)
- Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Yara E Elakkad
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Sugio CYC, Garcia AAMN, Albach T, Moraes GS, Bonfante EA, Urban VM, Neppelenbroek KH. Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence? J Fungi (Basel) 2020; 6:jof6020070. [PMID: 32456172 PMCID: PMC7344758 DOI: 10.3390/jof6020070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Considering the high prevalence and recurrence of Candida-associated denture stomatitis (CADS), in vivo studies in animal models are necessary before those in humans to evaluate new therapeutic strategies. This study aimed to review the literature on murine models of CADS induction using acrylic intraoral devices simulating dentures. Rats are recommended as experimental animals in these models as well as the adoption of a pasty diet. For maintenance in the proper position during the experiments, intraoral appliances must be obtained by individual impressions, using and retained exclusively by cementation on the molars. The region of interest for histopathological analysis was standardized as that corresponding to the area between the first molars. However, there is no consensus among the studies on the CADS induction rat models in relation to the Candida albicans inoculation and need for immunosuppression and/or administration of antibacterial drugs of animals. The greatest difficulty of the available models refers to maintaining the course of the lesion for a sufficient period to evaluate the effectiveness of the proposed treatment, considering the rapid and efficient murine immune response to candidal colonization. Therefore, future studies are necessary for the development of a robust and reproducible CADS model.
Collapse
Affiliation(s)
- Carolina Yoshi Campos Sugio
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
| | - Amanda Aparecida Maia Neves Garcia
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
| | - Thaís Albach
- Department of Dentistry, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR 84030-900, Brazil; (T.A.); (G.S.M.); (V.M.U.)
| | - Gustavo Simão Moraes
- Department of Dentistry, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR 84030-900, Brazil; (T.A.); (G.S.M.); (V.M.U.)
| | - Estevam Augusto Bonfante
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
| | - Vanessa Migliorini Urban
- Department of Dentistry, State University of Ponta Grossa, Avenida General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR 84030-900, Brazil; (T.A.); (G.S.M.); (V.M.U.)
| | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo, Alameda Octávio Pinheiro Brisolla, 9-75, Bauru, SP 17012-901, Brazil; (C.Y.C.S.); (A.A.M.N.G.); (E.A.B.)
- Correspondence: ; Tel.: +55-14-3235-8245; Fax: +55-14-3235-8277
| |
Collapse
|
10
|
Niyogi P, Pattnaik S, Maharana L, Mohapatra R, Haldar S. Temperature-dependent mucosal permeation kinetics of stigmasterol microspheres: In vivo mice model antioral candidiasis study. J Biomed Mater Res B Appl Biomater 2019; 108:1636-1654. [PMID: 31721433 DOI: 10.1002/jbm.b.34510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 11/11/2022]
Abstract
Evaluation of mucosal permeation of stigmasterol from the glutaraldehyde cross linked chitosan microspheres at increasing experimental temperatures was performed. The activation energy of permeation, partition, and diffusion were estimated to understand the permeation kinetic with respect to the temperature. The formulation depicting least activation energy possessed the increased permeation thresholds of drug at the site of application. The encapsulation efficacy and mucoadhesive strength were found to be directly proportional to the polymer-emulsifier ratio. Decreased intensity in crystallography directed the molecular dispersion of microencapsulated drug. The depleted enthalpic phase transition in thermogram affirmed the stigmasterol encapsulation. The sphericity and the size of microspheres were determined by scanning electron photo micrograph. The in vivo quantification of oral Candida infection with different statistical approach and histopathological observation of infected tongue of mice on treatment with the stigmasterol encapsulated microspheres showed significant anti oral candidiasis activity by reduction of fungal colony count and recovery of papillae, reorganization of basal cell layer and newly formed papillae during 21-28 days of treatment.
Collapse
Affiliation(s)
- Partha Niyogi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Snigdha Pattnaik
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Laxmidhar Maharana
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Saikat Haldar
- Medicinal, Aromatic and Economic Plants Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
11
|
Antifungal effect of Satureja khuzestanica Jamzad essential oil on oral candidiasis in immunosuppressed rats. HERBA POLONICA 2018. [DOI: 10.2478/hepo-2018-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: The antimicrobial, antibacterial, antioxidant, antihyperlipidaemic, antidiabetic, anti-inflammatory and analgesic effects of Satureja khuzestanica (Lamiaceae) have been investigated in numerous studies.
Objective: The antifungal effects of S. khuzestanica essential oil (SKJO) in immunosuppressed rats suffering from oral candidiasis were investigated.
Methods: A fungal suspension with a density of 3×108 CFU/ml was taken from the isolate of a case with acute vaginitis. In order to achieve a medicinal formulation, accurate twice the minimum inhibitory concentration (MIC) of SKJO and 10 times MIC of nystatin was used with 0.8% agar as a base material. In this study, 35 rats divided into 5 groups each of 7 were used. The assessment of level of infection and specification of the effects of treatment were performed using microbiological and histopathological methods as well as clinical examinations.
Results: Our results show that carvacrol is the main compound of SKJ essential oil. Lesions completely disappeared in both treatment groups (SKJO and nystatin) after 8 days of treatment. Furthermore, in groups treated with SKJO and nystatin, the quantities of mean logarithm of colony forming unit (CFU) were 85.62% and 90.62%, respectively, in comparison with placebo group. Also, histopathological properties suggested no infection in groups who had clean and normal dorsal tongue mucosa.
Conclusions: Using SKJO with twice accuracy it was concluded that MIC in immunosuppressed rats was quite successful in a time of a week and equal with that of a nystatin treatment with an accuracy of 10 times the MIC.
Collapse
|
12
|
Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. J Antibiot (Tokyo) 2016; 69:541-8. [PMID: 27072286 DOI: 10.1038/ja.2016.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/04/2016] [Accepted: 03/13/2016] [Indexed: 01/24/2023]
Abstract
Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.
Collapse
|
14
|
Garg A, Singh S. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B Biointerfaces 2011; 87:280-8. [PMID: 21689909 DOI: 10.1016/j.colsurfb.2011.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 12/25/2022]
Abstract
In the present study eugenol loaded solid lipid nanoparticles (SLN) was prepared and characterized for particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release and in vivo antifungal activity. Effect of addition of liquid lipid (caprylic triglyceride) to solid lipid (stearic acid) on crystallinity of lipid matrix of SLN was determined by using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. Transmission electron microscopy (TEM) was carried out to determine the morphology of SLN. In vivo antifungal activity of eugenol loaded lipid nanoparticles was evaluated by using a model of oral candidiasis in immunosuppressed rats. Particle size results showed that d(90) of SLN(1) (single lipid matrix) and SLN(2) (binary lipid matrix) was 332±14.2 nm and 87.8±3.8 nm, respectively. Polydispersity index was found to be in the range of 0.27-0.4 which indicate moderate size distribution. Encapsulation efficiency of SLN(2) (98.52%) was found to be more than that of SLN(1) (91.80%) at same lipid concentration (2%, w/v). Increasing of the solid lipid concentration from 2% (w/v) to 4% (w/v) resulted in increase in encapsulation efficiency and the particle size. SLN(2) shows faster release of eugenol than that of SLN(1) due to smaller size and presence of liquid lipid which provide less barriers to the diffusion of drug from matrix. TEM study reveals the spherical shape of SLN. FT-IR, DSC and XRD results indicate less crystallinity of SLN(2) than that of SLN(1). In vivo studies show no significant difference in log cfu value of all the groups at 0 day. At 8th day, log cfu value of group treated with saline (control), standard antifungal agent, eugenol solution, SLN(1) and SLN(2) was found to be 3.89±.032, 2.69, 3.39±.088, 3.19±.028 and 3.08±0.124, respectively. The in vivo study results indicate improvement in the antifungal activity of eugenol when administrated in the form of SLN.
Collapse
Affiliation(s)
- A Garg
- Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
15
|
Abstract
Invasive fungal infections with primary and opportunistic mycoses have become increasingly common in recent years and pose a major diagnostic and therapeutic challenge. They represent a major area of concern in today's medical fraternity. The occurrence of invasive fungal diseases, particularly in AIDS and other immunocompromised patients, is life-threatening and increases the economic burden. Apart from the previously known polyenes and imidazole-based azoles, newly discovered triazoles and echinocandins are more effective in terms of specificity, yet some immunosuppressed hosts are difficult to treat. The main reasons for this include antifungal resistance, toxicity, lack of rapid and microbe-specific diagnoses, poor penetration of drugs into sanctuary sites, and lack of oral or intravenous preparations. In addition to combination antifungal therapy, other novel antimycotic treatments such as calcineurin signaling pathway blockers and vaccines have recently emerged. This review briefly summarizes recent developments in the pharmacotherapeutic treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Bijoy P Mathew
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
16
|
Chami N, Bennis S, Chami F, Aboussekhra A, Remmal A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. ACTA ACUST UNITED AC 2005; 20:106-11. [PMID: 15720571 DOI: 10.1111/j.1399-302x.2004.00202.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND/AIMS The mechanism of the anticandidal action of the major phenolic components of oregano and clove essential oils - carvacrol and eugenol - was studied. This activity was also evaluated for the therapeutic efficacy in the treatment of the experimental oral candidiasis induced by Candida albicans in immunosuppressed rats. METHODS In vitro, the addition of carvacrol at 0.1% or eugenol at 0.2% during the exponential growth of C. albicans was evaluated. The release of substances absorbing at 280 nm by cells treated with these two components was also measured spectrophotometrically. In vivo, oral candidiasis in immunosuppressed rats was established by inoculating 3 x 10(8) cells of C. albicans with a cotton swab on three alternate days. The number of colony counts was evaluated from the oral cavity of rats treated for eight consecutive days with carvacrol, eugenol or nystatin and compared to untreated controls. RESULTS Carvacrol and eugenol were fungicidal in exponentially growing C. albicans. Interestingly, this fungicidal effect was accompanied by the release of substances absorbing at 280 nm. In an immunosuppressed rat model of oral candidiasis, carvacrol or eugenol treatment significantly (P < 0.05) reduced the number of colony counts sampled from the oral cavity of rats treated for eight consecutive days compared to untreated control rats. Similar results were obtained with nystatin used as a reference treatment. CONCLUSION The in vitro results indicated that both carvacrol and eugenol exerted an anticandidal effect by a mechanism implicating an important envelope damage. Their in vivo efficacy on experimental oral candidiasis leads us to consider them as possible antifungal agents.
Collapse
Affiliation(s)
- N Chami
- Faculté des Sciences de Fès, Laboratoire de Biotechnologie, Atlas Fes, Morocco
| | | | | | | | | |
Collapse
|
17
|
Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S. Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 2005; 49:52-6. [PMID: 15616275 PMCID: PMC538903 DOI: 10.1128/aac.49.1.52-56.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The activities of R-135853, a novel sordarin derivative that possesses a 1,4-oxazepane ring moiety, were evaluated in vitro and in vivo. R-135853 exhibited potent in vitro activities against Candida albicans (fluconazole-susceptible strains), Candida glabrata, Candida tropicalis, and Cryptococcus neoformans, with MICs at which 90% of isolates were inhibited of 0.03, 1, 0.5, and 0.5 microg/ml, respectively. R-135853 also exhibited potent activities against fluconazole-susceptible dose-dependent and fluconazole-resistant strains of C. albicans, with MICs ranging from 0.03 to 0.06 mug/ml. However, R-135853 exhibited weak or no activity against Candida parapsilosis, Candida krusei, and Aspergillus spp. R-135853 exhibited dose-dependent efficacy against experimental murine hematogenous candidiasis induced by C. albicans when it was administered by both the subcutaneous and the oral routes and reduced viable cell counts in the kidneys significantly when it was administered at 50 mg/kg of body weight/dose (administration three times a day). In this model, R-135853 also exhibited dose-dependent efficacy by single oral administration. Subcutaneous administration of R-135853 exhibited dose-dependent efficacy against experimental murine esophageal candidiasis induced by fluconazole-resistant C. albicans, against which fluconazole at 50 mg/kg/dose was ineffective, and reduced viable cell counts in the esophagus significantly when it was administered at 10 and 50 mg/kg/dose. R-135853 eradicated C. albicans from the esophagi of one and four of five mice when it was administered at 10 and 50 mg/kg/dose, respectively. These results suggest that R-135853 is promising for the treatment of disseminated or mucosal candidiasis, including fluconazole-refractory infections.
Collapse
Affiliation(s)
- Yasuki Kamai
- Biological Research Laboratories, Sankyo Co., Ltd., 2-58 Hiromachi 1-chome, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
18
|
Takakura N, Sato Y, Ishibashi H, Oshima H, Uchida K, Yamaguchi H, Abe S. A novel murine model of oral candidiasis with local symptoms characteristic of oral thrush. Microbiol Immunol 2003; 47:321-6. [PMID: 12825893 DOI: 10.1111/j.1348-0421.2003.tb03403.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A conventional and easy method to establish a murine oral candidiasis model, which has not only a stable yeast population in the oral cavity but also symptoms characteristic of oral thrush, was developed by using a sedative agent. Mice were immunosuppressed with prednisolone and were given tetracycline hydrochloride. They were orally infected with 10(6) viable cells of Candida albicans by means of a cotton swab and enough chlorpromazine chloride had been injected to keep them in a sedative state about for 3 hr after inoculation. From day 3 to day 7 post inoculation, 10(5)-10(6) colony forming units of Candida were recovered from the oral cavity of each mouse and whitish, curd-like patches were observed on most parts of tongue. Microscopically, germ tubes had appeared on the tongue surface. This model would be a useful experimental oral candidiasis for investigating the pathogenesis of C. albicans oral infection and the efficacy of various antifungal agents microbiologically and symptomatically.
Collapse
Affiliation(s)
- Natsuko Takakura
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa 228-8583, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Polak A. Antifungal therapy--state of the art at the beginning of the 21st century. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; Spec No:59-190. [PMID: 12675476 DOI: 10.1007/978-3-0348-7974-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The most relevant information on the present state of the art of antifungal chemotherapy is reviewed in this chapter. For dermatomycoses a variety of topical antifungals are available, and safe and efficacious systemic treatment, especially with the fungicidal drug terbinafine, is possible. The duration of treatment can be drastically reduced. Substantial progress in the armamentarium of drugs for invasive fungal infections has been made, and a new class of antifungals, echinocandins, is now in clinical use. The following drugs in oral and/or intravenous formulations are available: the broad spectrum polyene amphotericin B with its new "clothes"; the sterol biosynthesis inhibitors fluconazole, itraconazole, and voriconazole; the glucan synthase inhibitor caspofungin; and the combination partner flucytosine. New therapy schedules have been studied; combination therapy has found a significant place in the treatment of severely compromised patients, and the field of prevention and empiric therapy is fast moving. Guidelines exist nowadays for the treatment of various fungal diseases and maintenance therapy. New approaches interfering with host defenses or pathogenicity of fungal cells are being investigated, and molecular biologists are looking for new targets studying the genomics of pathogenic fungi.
Collapse
|
20
|
Jimenez E, Martínez A, Aliouat EM, Caballero J, Dei-Cas E, Gargallo-Viola D. Therapeutic efficacies of GW471552 and GW471558, two new azasordarin derivatives, against pneumocystosis in two immunosuppressed-rat models. Antimicrob Agents Chemother 2002; 46:2648-50. [PMID: 12121948 PMCID: PMC127331 DOI: 10.1128/aac.46.8.2648-2650.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two new azasordarins, GW471552 and GW471558, were studied in vivo for treatment of Pneumocystis carinii pneumonia. In the Wistar rat spontaneous pneumonia model, both azasordarins significantly reduced the number of P. carinii cysts per gram of lung homogenate when administered at 1 mg/kg of body weight twice a day for 10 days. In a nude rat inoculation model, both compounds showed therapeutic efficacy at 0.25 mg/kg twice a day for 10 days.
Collapse
Affiliation(s)
- Elena Jimenez
- GlaxoSmithKline, Technological Park of Madrid, Severo Ochoa 2, 28760 Tres Cantos, Madrid., Spain.
| | | | | | | | | | | |
Collapse
|
21
|
Martinez A, Ferrer S, Santos I, Jimenez E, Sparrowe J, Regadera J, De Las Heras FG, Gargallo-Viola D. Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. Antimicrob Agents Chemother 2001; 45:3304-9. [PMID: 11709301 PMCID: PMC90830 DOI: 10.1128/aac.45.12.3304-3309.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sordarins constitute a new class of antifungal agents with a novel mechanism of action involving the selective inhibition of fungal protein synthesis. A further evolution of this class of antifungals has led to a new family of sordarin derivatives called azasordarins. The therapeutic efficacies of two new azasordarins, GW471552 and GW471558, were studied in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats. In all cases rats were immunosuppressed with dexamethasone in the drinking water. Oral candidiasis was established by inoculating 0.1 ml of a yeast suspension containing 5 x 10(8) cells of Candida albicans 4711E with a cotton swab on three alternate days. Vulvovaginal candidiasis was established in ovariectomized and estrus-induced rats by intravaginal inoculation of 10(7) CFU of C. albicans 4711E in 0.1 ml of saline. GW471552 and GW471558 were administered at 1, 5, and 10 mg/kg of body weight via the subcutaneous route. In oral candidiasis, azasordarins were administered each 8 h for 7 consecutive days, while in vaginal candidiasis the compounds were given each 4 h for 3 consecutive days. Antifungal activity of azasordarins was assessed by colony counts and by histological examination 1 day after treatment. In the oral infection model, GW471552 and GW471558 administered at 5 mg/kg significantly reduced (P < 0.05) the number of CFU of C. albicans compared with untreated controls. In addition, GW471552 and GW471558 given at 10 mg/kg eradicated C. albicans from the oral cavities of 100% of infected animals. Against vulvovaginal infection, both compounds showed significant therapeutic efficacy. GW471552 was able to eradicate the vaginal fungal burden at a dose of 10 mg/kg, and it significantly reduced the number of CFU of C. albicans in vaginas of rats treated with a dose of 5 mg/kg (P < 0.05). GW471558 showed greater efficacy, eradicating the fungal burden of 100% of infected rats at a dose of 5 mg/kg and significantly reducing (P < 0.05) the C. albicans vaginal counts even at a dose of 1 mg/kg. In both therapeutic efficacy studies, the histological findings confirmed the microbiological results. The experimental results presented show that the tested azasordarins are effective against oral and vulvovaginal candidiasis in immunosuppressed rats and could be promising antifungal agents for use in humans.
Collapse
|
22
|
Herreros E, Almela MJ, Lozano S, Gomez de las Heras F, Gargallo-Viola D. Antifungal activities and cytotoxicity studies of six new azasordarins. Antimicrob Agents Chemother 2001; 45:3132-9. [PMID: 11600368 PMCID: PMC90794 DOI: 10.1128/aac.45.11.3132-3139.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 are members of a new family of sordarin derivatives called azasordarins. The in vitro activities of these compounds were evaluated against clinical isolates of yeasts, including Candida albicans, Candida non-albicans, and Cryptococcus neoformans strains. Activities against Pneumocystis carinii, Aspergillus spp., less common molds, and dermatophytes were also investigated. Azasordarin derivatives displayed significant activities against the most clinically important Candida species, with the exception of C. krusei. Against C. albicans, including fluconazole-resistant strains, MICs at which 90% of the isolates tested are inhibited (MIC(90)s) were 0.002 microg/ml with GW 479821, 0.015 microg/ml with GW 515716 and GW 587270, and 0.06 microg/ml with GW 471552, GW 471558, and GW 570009. The MIC(90)s of GW 471552, GW 471558, GW 479821, GW 515716, GW 570009, and GW 587270 were 0.12, 0.12, 0.03, 0.06, 0.12, and 0.06 microg/ml, respectively, against C. tropicalis and 4, 0.25, 0.06, 0.25, 0.5, and 0.5 microg/ml, respectively, against C. glabrata. In addition, some azasordarin derivatives (GW 479821, GW 515716, GW 570009, and GW 58720) were active against C. parapsilosis, with MIC(90)s of 2, 4, 4, and 1 microg/ml, respectively. The compounds were extremely potent against P. carinii, showing 50% inhibitory concentrations of <or=0.001 microg/ml. However Cryptococcus neoformans was resistant to all compounds tested (MIC > 16 microg/ml). These azasordarin derivatives also showed significant activity against emerging fungal pathogens, which affect immunocompromised patients, such as Rhizopus arrhizus, Blastoschizomyces capitatus, and Geotrichum clavatum. Against these organisms, the MICs of GW 587270 ranged from 0.12 to 1 microg/ml, those of GW 479821 and GW 515716 ranged from 0.12 to 2 microg/ml, and those of GW 570009 ranged from 0.12 to 4 microg/ml. Against Fusarium oxysporum, Scedosporium apiospermum, Absidia corymbifera, Cunninghamella bertholletiae, and dermatophytes, GW 587270 was the most active compound, with MICs ranging from 4 to 16 microg/ml. Against Aspergillus spp., the MICs of the compounds tested were higher than 16 microg/ml. The in vitro selectivity of azasordarins was investigated by cytotoxicity studies performed with five cell lines and primary hepatocytes. Concentrations of compound required to achieve 50% inhibition of the parameter considered (Tox(50)s) of GW 570009, GW 587270, GW 479281, and GW 515716 in the cell lines ranged from 60 to 96, 49 to 62, 24 to 36, and 16 to 38 microg/ml, respectively. The cytotoxicity values of GW 471552 and GW 471558 were >100 microg/ml for all cell lines tested. Tox(50)s on hepatocytes were in the following order: GW 471558 > GW 471552 > GW 570009 > GW 587270 > GW 515716 > GW 479821, with values ranging from higher than 100 microg/ml to 23 microg/ml. The cytotoxicity results obtained with fully metabolizing rat hepatocytes were in total agreement with those obtained with cell lines. In summary, the in vitro activities against important pathogenic fungi and the selectivity demonstrated in mammalian cell lines justify additional studies to determine the clinical usefulness of azasordarins.
Collapse
Affiliation(s)
- E Herreros
- Glaxo Smithkline, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Kamai Y, Kubota M, Kamai Y, Hosokawa T, Fukuoka T, Filler SG. New model of oropharyngeal candidiasis in mice. Antimicrob Agents Chemother 2001; 45:3195-7. [PMID: 11600377 PMCID: PMC90803 DOI: 10.1128/aac.45.11.3195-3197.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We established a straightforward murine model of oropharyngeal candidiasis. Mice were immunosuppressed with cortisone acetate, anesthetized, and then inoculated by placing cotton wool balls saturated with Candida albicans sublingually for 2 h. A prolonged, reproducible infection was induced. This model may be useful for antifungal screening or pathogenesis studies.
Collapse
Affiliation(s)
- Y Kamai
- Biological Research Laboratories, Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Aviles P, Falcoz C, Guillén MJ, San Roman R, Gómez De Las Heras F, Gargallo-Viola D. Correlation between in vitro and in vivo activities of GM 237354, a new sordarin derivative, against Candida albicans in an in vitro pharmacokinetic-pharmacodynamic model and influence of protein binding. Antimicrob Agents Chemother 2001; 45:2746-54. [PMID: 11557464 PMCID: PMC90726 DOI: 10.1128/aac.45.10.2746-2754.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antifungal effect of GM 237354, a sordarin derivative, was studied in an in vitro pharmacokinetic (PK)-pharmacodynamic dynamic system (bioreactor) which reproduces PK profiles observed in a previously described model of drug efficacy against murine systemic candidiasis. Immunocompetent mice infected intravenously with 10(5) CFU of Candida albicans were treated with GM 237354 at 2.5, 10, and 40 mg/kg of body weight every 8 h subcutaneously for 7 days. Free concentrations in serum were calculated by multiplying total concentrations measured in vivo by 0.05, the free fraction determined in vitro by equilibrium dialysis. In the bioreactor the inoculum was approximately 10(6) CFU/ml; and a one-compartment PK model was used to reproduce the PK profiles of free and total GM 237354 in serum obtained in mice, and clearance of C. albicans was measured over 48 h. A good correlation was observed when the in vivo fungal kidney burden and the area under the survival time curve were compared with the in vitro broth "burden," although only when free in vivo levels in serum were reproduced in vitro. GM 237354 displayed a 3-log decrease effect both in vivo and in vitro. The very few reports available on in vitro-in vivo correlations have been obtained with antibiotics. The good in vitro-in vivo correlation obtained with an antifungal agent shows that the in vitro dynamic system could constitute a powerful investigational tool prior to assessment of the efficacy of an anti-infective agent in animals and humans.
Collapse
Affiliation(s)
- P Aviles
- GlaxoSmithKline S.A., Parque Tecnológico de Madrid, 28760 Tres Cantos, Madrid, Spain
| | | | | | | | | | | |
Collapse
|