1
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
2
|
Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem 2016; 8:1063-84. [PMID: 27327972 DOI: 10.4155/fmc-2016-0078] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Avibactam, which is the first non-β-lactam β-lactamase inhibitor to be introduced for clinical use, is a broad-spectrum serine β-lactamase inhibitor with activity against class A, class C, and, some, class D β-lactamases. We provide an overview of efforts, which extend to the period soon after the discovery of the penicillins, to develop clinically useful non-β-lactam compounds as antibacterials, and, subsequently, penicillin-binding protein and β-lactamase inhibitors. Like the β-lactam inhibitors, avibactam works via a mechanism involving covalent modification of a catalytically important nucleophilic serine residue. However, unlike the β-lactam inhibitors, avibactam reacts reversibly with its β-lactamase targets. We discuss chemical factors that may account for the apparently special nature of β-lactams and related compounds as antibacterials and β-lactamase inhibitors, including with respect to resistance. Avenues for future research including non-β-lactam antibacterials acting similarly to β-lactams are discussed.
Collapse
Affiliation(s)
| | | | | | - Jürgen Brem
- Department of Chemistry, University of Oxford, UK
| | | |
Collapse
|
3
|
Miller MD, Kale M, Reddy K, Tentarelli S, Zambrowski M, Zhang M, Palmer T, Breen J, Lahiri S, Shirude PS, Verheijen JC. Alkylidene Oxapenem β-Lactamase Inhibitors Revisited: Potent Broad Spectrum Activity but New Stability Challenges. ACS Med Chem Lett 2014; 5:915-20. [PMID: 25147614 DOI: 10.1021/ml5001855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022] Open
Abstract
We present a comprehensive study of C6-alkylidene containing oxapenems. We show that this class of β-lactamase inhibitors possesses an unprecedented spectrum with activity against class A, C, and D enzymes. Surprisingly, this class of compounds displayed significant photolytic instability in addition to the known hydrolytic instability. Quantum mechanical calculations were used to develop models to predict the stability of new analogues.
Collapse
Affiliation(s)
- Matthew D. Miller
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Manoj Kale
- Department
of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Avishkar, Bellary
Road, Bangalore 560024, India
| | - Kishore Reddy
- Department
of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Avishkar, Bellary
Road, Bangalore 560024, India
| | - Sharon Tentarelli
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Mark Zambrowski
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Minli Zhang
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tiffany Palmer
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - John Breen
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sushmita Lahiri
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Pravin S. Shirude
- Department
of Medicinal Chemistry, AstraZeneca India Pvt. Ltd, Avishkar, Bellary
Road, Bangalore 560024, India
| | - Jeroen C. Verheijen
- Infection
iMed, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
4
|
Ball AP, Bartlett JG, Craig WA, Drusano GL, Felmingham D, Garau JA, Klugman KP, Low DE, Mandell LA, Rubinstein E, Tillotson GS. Future Trends in Antimicrobial Chemotherapy: Expert Opinion on the 43rdICAAC. J Chemother 2013; 16:419-36. [PMID: 15565907 DOI: 10.1179/joc.2004.16.5.419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The current document bestows an expert synopsis of key new information presented at the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) meeting in 2003. Data is presented on the socio-political aspects of and policies on antimicrobial prescribing, novel mechanisms of resistance in Streptococcus pneumoniae, and current epidemiological trends in global resistance. Novel information on new (and existing) antimicrobial agents--new penicillins, cephalosporins, monobactams and oxipenem inhibitors, ketolides, glycopeptides, fluoroquinolones (and hybrids), peptides, daptomycin, aminomethylcyclines, glycylcyclines, and newer formulations of agents such as amoxycillin-clavulanate--provides renewed hope that resistant pathogens can be controlled through use of more potent agents. Improved strategies for the use of existing antimicrobial agents, such as the use of high-dose regimens, short-course therapy, also may delay or reduce the development of resistance and preserve the value of our antibiotic armamentarium.
Collapse
Affiliation(s)
- A P Ball
- University of St Andrews, Fife, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 2010; 70:651-79. [PMID: 20394454 DOI: 10.2165/11318430-000000000-00000] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Collapse
Affiliation(s)
- Carine Bebrone
- Biological Macromolecules, Centre for Protein Engineering, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
7
|
Igličar P, Legen I, Vilfan G, Selič L, Preželj A. Permeability of a novel β-lactamase inhibitor LK-157 and its ester prodrugs across rat jejunum in vitro. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.09.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
LK-157 is a novel 10-ethylidene tricyclic carbapenem that resembles the structure of the broad-spectrum antibiotic sanfetrinem and acts as a potent inactivator of β-lactamases of classes A, C and D. LK-157 is a highly soluble but poorly permeable drug. Since most of the β-lactams are poorly absorbed, ester prodrugs LK-159, LK-157E1 and LK-157E2 were designed to enhance membrane permeability. This study investigated the permeability of LK-157 and the three ester prodrugs across rat intestine in vitro. The morpholinoethyl ester of sanfetrinem was also investigated.
Method
Permeability across rat jejunum was determined using EasyMount side-by-side diffusion chambers.
Key findings
The solubility and permeability of morpholinoethyl ester LK-157E2 were superior to those of LK-159 and LK-157E1. The morpholinoethyl ester of sanfetrinem LK-176E1 had the highest observed permeability coefficient and consequently the highest predicted absorption in humans.
Conclusions
These results suggest that the morpholinoethyl esters of LK-157 and sanfetrinem could be further investigated to assess bioavailability in vivo.
Collapse
Affiliation(s)
| | - Igor Legen
- Lek Pharmaceuticals d.d., Ljubljana, Slovenia
| | | | - Lovro Selič
- Lek Pharmaceuticals d.d., Ljubljana, Slovenia
| | | |
Collapse
|
8
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
9
|
Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM. Beta-lactams and beta-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit Rev Microbiol 2009; 35:81-108. [PMID: 19514910 DOI: 10.1080/10408410902733979] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of successive generations of beta-lactams has selected successive generations of beta-lactamases including CTX-M ESBLs, AmpC beta-lactamases, and KPC carbapenamases in Enterobacteriaceae. Moreover, this cephalosporin resistance, along with rising resistance to fluoroquinolones, is now driving the use of carbapenems and unfortunately the carbapenem resistance has emerged markedly, especially in Acinetobacter spp. due to OXA- and metallo-carbapenemases. The industry responded to the challenge of rising resistance and recently developed some novel beta-lactams such as ceftobiprole, ceftaroline etc. and many beta-lactam compounds, including beta-lactamase-inhibitors, such as BMS-247243, S-3578, RWJ-54428, CS-023, SMP-601, NXL 104, BAL 30376, LK 157, and so on are under trials. This review provides the comprehensive accounts of the developments in penicillins, cephalosporins, carbapenems, and beta-lactamase-inhibitors, and the insight about medicinal chemistry, mechanism(s) of action and resistance, potential strategies to overcome resistance due to beta-lactamases, and also the recent advancements in the development of newer beta-lactam compounds; some of which are still under trials and yet to be classified. This review will fill the gap since previously published reviews and will serve as a comprehensive update on the current topic.
Collapse
Affiliation(s)
- M Shahid
- Section of Antimicrobial Resistance Researches and Molecular Biology, Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
10
|
Paukner S, Hesse L, Prezelj A, Solmajer T, Urleb U. In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum {beta}-lactamase inhibitor. Antimicrob Agents Chemother 2009; 53:505-11. [PMID: 19075067 PMCID: PMC2630636 DOI: 10.1128/aac.00085-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/30/2008] [Accepted: 11/27/2008] [Indexed: 11/20/2022] Open
Abstract
LK-157 is a novel tricyclic carbapenem with potent activity against class A and class C beta-lactamases. When tested against the purified TEM-1 and SHV-1 enzymes, LK-157 exhibited 50% inhibitory concentrations (IC(50)s) in the ranges of the clavulanic acid and tazobactam IC(50)s (55 nM and 151 nM, respectively). Moreover, LK-157 significantly inhibited AmpC beta-lactamase (IC(50), 62 nM), as LK-157 was >2,000-fold more potent than clavulanic acid and approximately 28-fold more active than tazobactam. The in vitro activities of LK-157 in combination with amoxicillin, piperacillin, ceftazidime, cefotaxime, ceftriaxone, cefepime, cefpirome, and aztreonam against an array of Ambler class A (TEM-, SHV-, CTX-M-, KPC-, PER-, BRO-, and PC-type)- and class C-producing bacterial strains derived from clinical settings were evaluated in synergism experiments and compared with those of clavulanic acid, tazobactam, and sulbactam. In vitro MICs against ESBL-producing strains (except CTX-M-containing strains) were reduced 2- to >256-fold, and those against AmpC-producing strains were reduced even up to >32-fold. The lowest MICs (< or =0.025 to 1.6 microg/ml) were observed for the combination of cefepime and cefpirome with a constant LK-157 concentration of 4 microg/ml, thus raising an interest for further development. LK-157 proved to be a potent beta-lactamase inhibitor, combining activity against class A and class C beta-lactamases, which is an absolute necessity for use in the clinical setting due to the worldwide increasing prevalence of bacterial strains resistant to beta-lactam antibiotics.
Collapse
|
11
|
|
12
|
Georgopapadakou NH. β-Lactamase inhibitors: evolving compounds for evolving resistance targets. Expert Opin Investig Drugs 2005; 13:1307-18. [PMID: 15461559 DOI: 10.1517/13543784.13.10.1307] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The many and diverse beta-lactamases produced by bacteria, particularly by Gram-negative pathogens, are increasingly posing a serious threat to the clinical utility of beta-lactams. First-generation inhibitors (clavulanic acid, sulbactam, tazobactam) focus on Ambler class A enzymes. However, recent structural upgrades of class A beta-lactamases (e.g. TEM, SHV) have extended their spectrum (extended-spectrum beta-lactamases and carbapenemases [Sme, NMC-A, IMI-1]) and have brought about the possibility of beta-lactamase-inhibitor resistance. Furthermore, the mobilisation and spread of originally chromosomal class C enzymes (CMY, MIR), the growing clinical importance of class B enzymes (IMP, VIM), the emergence of inhibitor-resistant, broad spectrum class D (OXA) enzymes and the co-existence of different classes of beta-lactamases in the same pathogen have spurred research toward universal inhibitors. A complicating issue is target accessibility in Gram-negative bacteria, particularly in Enterobacter, Acinetobacter, Pseudomonas, Stenotrophomonas and other organisms, which is necessary in order for the inhibitor to synergise with vulnerable beta-lactam antibiotics. Several new, broad-spectrum inhibitors have emerged: cephem sulfones and oxapenems are upgrades of penam sulfones and oxapenams, respectively, with cephem sulfones possibly extending their inhibition to class B metallo-enzymes; and boronates and phosphonates are designed de novo, based on common structural and mechanistic features of serine beta-lactamases.
Collapse
|
13
|
Weiss WJ, Petersen PJ, Murphy TM, Tardio L, Yang Y, Bradford PA, Venkatesan AM, Abe T, Isoda T, Mihira A, Ushirogochi H, Takasake T, Projan S, O'Connell J, Mansour TS. In vitro and in vivo activities of novel 6-methylidene penems as beta-lactamase inhibitors. Antimicrob Agents Chemother 2005; 48:4589-96. [PMID: 15561830 PMCID: PMC529194 DOI: 10.1128/aac.48.12.4589-4596.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel penem molecules with heterocycle substitutions at the 6 position via a methylidene linkage were investigated for their activities and efficacy as beta-lactamase inhibitors. The concentrations of these molecules that resulted in 50% inhibition of enzyme activity were 0.4 to 3.1 nM for the TEM-1 enzyme, 7.8 to 72 nM for Imi-1, 1.5 to 4.8 nM for AmpC, and 14 to 260 nM for a CcrA metalloenzyme. All the inhibitors were more stable than imipenem against hydrolysis by hog and human dehydropeptidases. Piperacillin was combined with a constant 4-microg/ml concentration of each inhibitor for MIC determinations. The combinations reduced piperacillin MICs by 2- to 32-fold for extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae strains. The MICs for piperacillin-resistant (MIC of piperacillin, >64 microg/ml) strains of Enterobacter spp., Citrobacter spp., and Serratia spp. were reduced to the level of susceptibility (MIC of piperacillin, < or =16 microg/ml) when the drug was combined with 4, 2, or 1 microg of these penem inhibitors/ml. Protection against acute lethal bacterial infections with class A and C beta-lactamase- and ESBL-producing organisms in mice was also demonstrated with piperacillin plus inhibitor. Median effective doses were reduced by approximately two- to eightfold compared to those of piperacillin alone when the drug was combined with the various inhibitors at a 4:1 ratio. Pharmacokinetic analysis after intravenous administration of the various inhibitors showed mean residence times of 0.1 to 0.5 h, clearance rates of 15 to 81 ml/min/kg, and volumes of distribution between 0.4 and 2.5 liters/kg. The novel methylidene penem molecules inhibit both class A and class C enzymes and warrant further investigation for potential as therapeutic agents when used in combination with a beta-lactam antibiotic.
Collapse
Affiliation(s)
- William J Weiss
- Infectious Disease and Oncology, Wyeth Research, Pearl River, New York 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bowker KE, Noel AR, Walsh TR, Rogers CA, MacGowan AP. Pharmacodynamics of ceftazidime plus the serine beta-lactamase inhibitor AM-112 against Escherichia coli containing TEM-1 and CTX-M-1 beta-lactamases. Antimicrob Agents Chemother 2004; 48:4482-4. [PMID: 15504890 PMCID: PMC525393 DOI: 10.1128/aac.48.11.4482-4484.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A strain of Escherichia coli containing TEM-1 and CTX-M-1 was tested in an in vitro pharmacokinetic model against ceftazidime with and without AM-112, a serine beta-lactamase inhibitor. Ceftazidime alone was less effective than ceftazidime plus AM-112, and a single dose was more effective than three fractionated doses.
Collapse
Affiliation(s)
- Karen E Bowker
- Bristol Centre for Antimicrobial Research & Evaluation, North Bristol NHS Trust, Department of Medical Microbiology, Southmead Hospital, Westbury-on-Trym, Bristol, BS10 5NB United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother 2003; 47:2615-8. [PMID: 12878527 PMCID: PMC166081 DOI: 10.1128/aac.47.8.2615-2618.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their beta-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum beta-lactamase enzymes (ESBLs). The oxapenems were potent beta-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by beta-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.
Collapse
Affiliation(s)
- Conor E Jamieson
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | | | |
Collapse
|