1
|
Ceneviva LVS, Mierzati M, Miyahara Y, Nomura CT, Taguchi S, Abe H, Tsuge T. Poly(3-mercapto-2-methylpropionate), a Novel α-Methylated Bio-Polythioester with Rubber-like Elasticity, and Its Copolymer with 3-hydroxybutyrate: Biosynthesis and Characterization. Bioengineering (Basel) 2022; 9:bioengineering9050228. [PMID: 35621506 PMCID: PMC9137767 DOI: 10.3390/bioengineering9050228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/08/2023] Open
Abstract
A new polythioester (PTE), poly(3-mercapto-2-methylpropionate) [P(3M2MP)], and its copolymer with 3-hydroxybutyrate (3HB) were successfully biosynthesized from 3-mercapto-2-methylpropionic acid as a structurally-related precursor. This is the fourth PTE of biological origin and the first to be α-methylated. P(3M2MP) was biosynthesized using an engineered Escherichia coli LSBJ, which has a high molecular weight, amorphous structure, and elastomeric properties, reaching 2600% elongation at break. P(3HB-co-3M2MP) copolymers were synthesized by expressing 3HB-supplying enzymes. The copolymers were produced with high content in the cells and showed a high 3M2MP unit incorporation of up to 77.2 wt% and 54.8 mol%, respectively. As the 3M2MP fraction in the copolymer increased, the molecular weight decreased and the polymers became softer, more flexible, and less crystalline, with lower glass transition temperatures and higher elongations at break. The properties of this PTE were distinct from those of previously biosynthesized PTEs, indicating that the range of material properties can be further expanded by introducing α-methylated thioester monomers.
Collapse
Affiliation(s)
- Lucas Vinicius Santini Ceneviva
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
| | - Maierwufu Mierzati
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
| | - Yuki Miyahara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
| | - Christopher T. Nomura
- Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Dr., Moscow, ID 83844-3010, USA;
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan;
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; (L.V.S.C.); (M.M.); (Y.M.)
- Correspondence:
| |
Collapse
|
2
|
Advenella mandrilli sp. nov., a bacterium isolated from the faeces of Mandrillus sphinx. Antonie van Leeuwenhoek 2022; 115:271-280. [PMID: 35031912 DOI: 10.1007/s10482-021-01695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
A novel Gram-negative strain WQ 585T, isolated from the faeces of mandrills (Mandrillus sphinx) collected at Yunnan Wild Animal Park, Yunnan province, China, was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belongs to the genus Advenella, sharing 98.5% and 98.2% sequence similarity with the type strain Advenella alkanexedens LAM0050T and Advenella faeciporci M-07T, respectively. The predominant ubiquinone was Q-8. The major cellular fatty acids (> 10%) were C16:0, C17:0 cyclo and Summed Feature 2. The G + C content of the genomic DNA of strain WQ 585T was 49.0%. The whole genome average nucleotide identity (gANI) values of strain WQ 585T with strain A. alkanexedens LAM0050T and A. faeciporci M-07T were 86.7% and 86.7%, and the digital DNA-DNA hybridization values of strain WQ 585T with strain A. alkanexedens LAM0050T and A. faeciporci M-07T were 64.5% and 62.5%, respectively. Growth occurred at 10-45 °C (optimally at 20-30 °C), pH 6.0-9.0 (optimally at pH 7.0), and 0-5% (w/v) NaCl (optimally at 0.5-2.0%). On the basis of the taxonomic evidence, a novel species, Advenella mandrilli sp. nov., is proposed. The type strain is WQ 585T (= KCTC 82396 T = CCTCC AA 2020028 T).
Collapse
|
3
|
Reddy MV, Steinbüchel A. 3,3'-Thiodipropionic acid (TDP), a possible precursor for the synthesis of polythioesters: identification of TDP transport proteins in Variovorax paradoxus TBEA6. Appl Microbiol Biotechnol 2021; 105:3733-3743. [PMID: 33900422 PMCID: PMC8102459 DOI: 10.1007/s00253-021-11294-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
3,3'-Thiodipropionic acid (TDP) is an antioxidant, which can be used as precursor carbon source to synthesize polythioesters. The bacterium Variovorax paradoxus TBEA6 strain can use TDP as a single source of carbon and energy. In the present study, experiments were carried out to identify proteins involved in the transport of TDP into the cells of strain TBEA6. Hence, eight putative tctC genes, which encode for the TctC proteins, were amplified from genomic DNA of TBEA6 strain using polymerase chain reaction and expressed in E. coli BL21 cells. Cells were grown in auto-induction medium, and protein purification was done using His Spin Trap affinity columns. Purity and molecular weight of each protein were confirmed by SDS-PAGE analysis. Protein-ligand interactions were monitored in thermoshift assays using the real-time PCR system. Two TctC proteins (locus tags VPARA-44430 and VPARA-01760) out of eight proteins showed a significant shift in their melting temperatures when they interact with the ligand (TDP or gluconate). The responsible genes were deleted in the genome of TBEA6 using suicide plasmid pJQ200mp18Tc, and single deletion mutants of the two candidate genes were subsequently generated. Finally, growth of the wild-type strain (TBEA6) and the two mutant strains (ΔVPARA-44430 and ΔVPARA-01760) were monitored and compared using TDP or gluconate as carbon sources. Wild type strains were successfully grown with TDP or gluconate. From the two mutant strains, one (ΔVPARA-44430) was unable to grow with TDP indicating that the tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.Key Points• Putative tctC genes from V. paradoxus TBEA6 were heterologously expressed in E. coli.• Protein-ligand interactions monitored in thermoshift assays using the real-time PCR.• tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Schäfer L, Meinert-Berning C, Wübbeler JH, Steinbüchel A. A tripartite tricarboxylate transporter (MIM_c39170-MIM_c39210) of Advenella mimigardefordensis DPN7 T is involved in citrate uptake. Int Microbiol 2019; 22:461-470. [PMID: 31098825 DOI: 10.1007/s10123-019-00073-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 01/30/2023]
Abstract
To date, tripartite tricarboxylate transport (TTT) systems are not well characterized in most organisms. To investigate which carbon sources are transported by the TTT system of A. mimigardefordensis DPN7T, single deletion mutants were generated lacking either completely both sets of genes encoding for these transport systems tctABCDE1 and tctABDE2 in the organism or the two genes encoding for the regulatory components of the third chosen TTT system, tctDE3. Deletion of tctABCDE1 (MIM_c39170-MIM_c39210) in Advenella mimigardefordensis strain DPN7T led to inhibition of growth of the cells with citrate indicating that TctABCDE1 is the transport system for the uptake of citrate. Because of the negative phenotype, it was concluded that this deletion cannot be substituted by other transporters encoded in the genome of strain DPN7T. A triple deletion mutant of A. mimigardefordensis lacking both complete TTT transport systems and the regulatory components of the third chosen system (ΔTctABCDE1 ΔTctABDE2 ΔTctDE3) showed a leaky growth with α-ketoglutarate in comparison with the wild type. The other investigated TTT (TctABDE3, MIM_c17190-MIM_c17220) is most probably involved in the transport of α-ketoglutarate. Additionally, thermoshift assays with TctC1 (MIM_c39190) showed a significant shift in the melting temperature of the protein in the presence of citrate whereas no shift occurred with α-ketoglutarate. A dissociation constant Kd for citrate of 41.7 μM was determined. Furthermore, alternative α-ketoglutarate transport was investigated via in silico analysis.
Collapse
Affiliation(s)
- Lukas Schäfer
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany. .,Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Heine V, Meinert-Berning C, Lück J, Mikowsky N, Voigt B, Riedel K, Steinbüchel A. The catabolism of 3,3'-thiodipropionic acid in Variovorax paradoxus strain TBEA6: A proteomic analysis. PLoS One 2019; 14:e0211876. [PMID: 30742653 PMCID: PMC6370202 DOI: 10.1371/journal.pone.0211876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Variovorax paradoxus strain TBEA6 is one of the few organisms known to utilize 3,3'-thiodipropionate (TDP) as the only source of carbon and energy. It cleaves TDP to 3-mercaptopropionate (3MP), which is a direct precursor for polythioester synthesis. To establish this process in V. paradoxus TBEA6, it is crucial to unravel its TDP metabolism. Therefore, a proteomic approach with subsequent deletion of interesting genes in the bacterium was chosen. Cells were cultivated with D-gluconate, TDP or 3-sulfinopropionate as the only carbon sources. Proteins with high abundances in gels of cells cultivated with either of the organic sulfur compounds were analyzed further. Thereby, we did not only confirm parts of the already postulated TDP metabolism, but also eight new protein candidates for TDP degradation were detected. Deletions of the corresponding genes (two enoyl-CoA hydratases (Ech-20 and Ech-30), an FK506-binding protein, a putative acetolactate synthase, a carnitinyl-CoA dehydratase, and a putative crotonase family protein) were obtained. Only the deletions of both Ech-20 and Ech-30 led to a TDP negative phenotype. The deletion mutant of VPARA_05510, which encodes the putative crotonase family protein showed reduced growth with TDP. The three genes are located in one cluster with genes proven to be involved in TDP metabolism. Thermal shift assays showed an increased stability of Ech-20 with TDP-CoA but not with TDP. These results indicate that Ech-20 uses TDP-CoA as a substrate instead of TDP. Hence, we postulate a new putative pathway for TDP metabolism. Ech-30 interacts with neither TDP-CoA nor TDP but might interact with other CoA-activated intermediates of the proposed pathway. Further enzyme characterization is necessary to unravel the complete pathway from TDP to 3MP.
Collapse
Affiliation(s)
- Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Janina Lück
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nadine Mikowsky
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Andreeßen C, Steinbüchel A. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 2018; 103:143-157. [DOI: 10.1007/s00253-018-9483-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022]
|
7
|
Brandt U, Galant G, Meinert-Berning C, Steinbüchel A. Functional analysis of active amino acid residues of the mercaptosuccinate dioxygenase of Variovorax paradoxus B4. Enzyme Microb Technol 2018; 120:61-68. [PMID: 30396400 DOI: 10.1016/j.enzmictec.2018.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 01/20/2023]
Abstract
Thiol dioxygenases are non-heme mononuclear-iron proteins and belong to the cupin superfamily. In 2014, mercaptosuccinate dioxygenase (Msdo) of Variovorax paradoxus B4 was identified as another bacterial cysteine dioxygenase (Cdo) homolog catalyzing the conversion of mercaptosuccinate (MS) into succinate and sulfite. To gain further insights into potentially important amino acid residues for enzyme activity, seven enzyme variants were generated and analyzed. (i) Three variants comprised the substitution of one conserved histidine residue each by leucine, either supposed to be mandatory for coordination of the Fe(II) cofactor (H93 and H95) or to be important for substrate positioning within the active site (H163). The corresponding enzyme variants were completely inactive confirming their essential roles for enzyme activity. (ii) Mutation C100S resulted as well in an inactive enzyme demonstrating its importance for either stability or activity of the protein. (iii) For eukaryotic Cdo, a hydrogen bond network for substrate positioning was postulated, and the corresponding amino acids are basically present in Msdo. Albeit the MsdoQ64A mutation exhibited an increased Km of 0.29 mM when compared to the wildtype with 0.06 mM, it did not significantly affect the specific activity. (iv) The variant MsdoR66A showed only very low activity even when high amounts of enzyme were applied indicating that this residue might be important for catalysis. (v) No strong effect had the mutation Y165F for which a specific enzyme activity of 10.22 μmol min-1 mg-1 protein and a Km value of 0.06 mM with high similarity to those of the wildtype enzyme were obtained. This residue corresponds to Y157 of human Cdo, which is part of the catalytic triad and is supposed to be involved in substrate positioning. Apparently, another residue could fulfill this role in Msdo, since the loss of Y165 did not have a strong effect.
Collapse
Affiliation(s)
- Ulrike Brandt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | - Gulsina Galant
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany; Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Hou N, Xia Y, Wang X, Liu H, Liu H, Xun L. H 2S biotreatment with sulfide-oxidizing heterotrophic bacteria. Biodegradation 2018; 29:511-524. [PMID: 30141069 PMCID: PMC6245092 DOI: 10.1007/s10532-018-9849-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022]
Abstract
Many industrial activities produce H2S, which is toxic at high levels and odorous at even very low levels. Chemolithotrophic sulfur-oxidizing bacteria are often used in its remediation. Recently, we have reported that many heterotrophic bacteria can use sulfide:quinone oxidoreductase and persulfide dioxygenase to oxidize H2S to thiosulfate and sulfite. These bacteria may also potentially be used in H2S biotreatment. Here we report how various heterotrophic bacteria with these enzymes were cultured with organic compounds and the cells were able to rapidly oxidize H2S to zero-valence sulfur and thiosulfate, causing no apparent acidification. Some also converted the produced thiosulfate to tetrathionate. The rates of sulfide oxidation by some of the tested bacteria in suspension, ranging from 8 to 50 µmol min−1 g−1 of cell dry weight at pH 7.4, sufficient for H2S biotreatment. The immobilized bacteria removed H2S as efficiently as the bacteria in suspension, and the inclusion of Fe3O4 nanoparticles during immobilization resulted in increased efficiency for sulfide removal, in part due to chemical oxidation H2S by Fe3O4. Thus, heterotrophic bacteria may be used for H2S biotreatment under aerobic conditions.
Collapse
Affiliation(s)
- Ningke Hou
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| |
Collapse
|
9
|
Thomas GH. On the pull: periplasmic trapping of sugars before transport. Mol Microbiol 2017; 104:883-888. [PMID: 28407314 DOI: 10.1111/mmi.13691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
Bacteria have evolved many routes for taking up nutrients, demonstrating great versatility in the types and mechanism of uptake used in different physiological conditions. The discovery of a single transporter in the bacterium Advenella mimigardefordensis for the uptake of five different sugars, including L-glucose and D-xylose, is described in this issue (Meinert et al., ), providing yet another example of the surprising adaptability of bacterial transport strategies. The transporter identified is a tripartite ATP-independent (TRAP) transporter, not previously associated with sugar transport, and in fact does not transport the sugars directly at all, rather requiring them to be converted in the periplasm to their respective sugar acid forms before transport through what appears to be a novel general sugar acid transporter. In this commentary, I describe how this process is consistent with the known mechanisms of TRAP transporters and consider how the role of sugar oxidation, or oxidative fermentation, operates with multiple hexose and pentose sugars. Finally I suggest that the periplasmic conversion of nutrients acquired across the outer membrane, before transport across the inner membrane, could have potentially useful biological functions in Gram negative bacteria.
Collapse
Affiliation(s)
- Gavin H Thomas
- Department of Biology, Wentworth Way, University of York, York, UK, YO10 5DD
| |
Collapse
|
10
|
Meinert C, Senger J, Witthohn M, Wübbeler JH, Steinbüchel A. Carbohydrate uptake in Advenella mimigardefordensis strain DPN7 T is mediated by periplasmic sugar oxidation and a TRAP-transport system. Mol Microbiol 2017; 104:916-930. [PMID: 28407382 DOI: 10.1111/mmi.13692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
In this study, we investigated an SBP (DctPAm ) of a tripartite ATP-independent periplasmic transport system (TRAP) in Advenella mimigardefordensis strain DPN7T . Deletion of dctPAm as well as of the two transmembrane compounds of the tripartite transporter, dctQ and dctM, impaired growth of A. mimigardefordensis strain DPN7T , if cultivated on mineral salt medium supplemented with d-glucose, d-galactose, l-arabinose, d-fucose, d-xylose or d-gluconic acid, respectively. The wild type phenotype was restored during complementation studies of A. mimigardefordensis ΔdctPAm using the broad host vector pBBR1MCS-5::dctPAm . Furthermore, an uptake assay with radiolabeled [14 C(U)]-d-glucose clearly showed that the deletion of dctPAm , dctQ and dctM, respectively, disabled the uptake of this aldoses in cells of either mutant strain. Determination of KD performing thermal shift assays showed a shift in the melting temperature of DctPAm in the presence of d-gluconic acid (KD 11.76 ± 1.3 µM) and the corresponding aldonic acids to the above-mentioned carbohydrates d-galactonate (KD 10.72 ± 1.4 µM), d-fuconic acid (KD 13.50 ± 1.6 µM) and d-xylonic acid (KD 8.44 ± 1.0 µM). The sugar (glucose) dehydrogenase activity (E.C.1.1.5.2) in the membrane fraction was shown for all relevant sugars, proving oxidation of the molecules in the periplasm, prior to transport.
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jana Senger
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Marco Witthohn
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Meinert C, Brandt U, Heine V, Beyert J, Schmidl S, Wübbeler JH, Voigt B, Riedel K, Steinbüchel A. Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T. PLoS One 2017; 12:e0174256. [PMID: 28358882 PMCID: PMC5373536 DOI: 10.1371/journal.pone.0174256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023] Open
Abstract
2-Mercaptosuccinate (MS) and 3,3´-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential proteomic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propionate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response. The deletion of two genes encoding transcriptional regulators (LysR (MIM_c31370) and Xre (MIM_c31360)) in the close proximity of the relevant genes of DTDP catabolism (acdA, mdo and the genes encoding the enzymes of the methylcitric acid cycle; prpC,acnD, prpF and prpB) showed that these two regulators are essential for growth of A. mimigardefordensis strain DPN7T with DTDP and that they most probably regulate transcription of genes mandatory for this catabolic pathway. Furthermore, proteome analysis revealed a high abundance (ratio MS/S 10.9) of a hypothetical cupin-2-domain containing protein (MIM_c37420). This protein shows an amino acid sequence similarity of 60% to a newly identified MS dioxygenase from Variovorax paradoxus strain B4. Deletion of the gene and the adjacently located transcriptional regulator LysR, as well as heterologous expression of MIM_c37420, the putative mercaptosuccinate dioxygenase (Msdo) from A. mimigardefordensis, showed that this protein is the key enzyme of MS degradation in A. mimigardefordensis strain DPN7T (KM 0.2 mM, specific activity 17.1 μmol mg-1 min-1) and is controlled by LysR (MIM_c37410).
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrike Brandt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jessica Beyert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sina Schmidl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
12
|
Wenning L, Stöveken N, Wübbeler JH, Steinbüchel A. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16. Appl Environ Microbiol 2016; 82:910-21. [PMID: 26590284 PMCID: PMC4725276 DOI: 10.1128/aem.02568-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs.
Collapse
Affiliation(s)
- Leonie Wenning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nadine Stöveken
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp. Appl Environ Microbiol 2015; 81:8294-306. [PMID: 26407888 DOI: 10.1128/aem.02059-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023] Open
Abstract
Four Rhodococcus spp. exhibited the ability to use 4,4'-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB).
Collapse
|
14
|
Wübbeler JH, Hiessl S, Meinert C, Poehlein A, Schuldes J, Daniel R, Steinbüchel A. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters. J Biotechnol 2015; 209:85-95. [PMID: 26073999 DOI: 10.1016/j.jbiotec.2015.06.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/30/2022]
Abstract
The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Wübbeler JH, Steinbüchel A. New pathways for bacterial polythioesters. Curr Opin Biotechnol 2014; 29:85-92. [DOI: 10.1016/j.copbio.2014.02.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 11/25/2022]
|
16
|
Polythioester synthesis in Ralstonia eutropha H16: Novel insights into 3,3′-thiodipropionic acid and 3,3′-dithiodipropionic acid catabolism. J Biotechnol 2014; 184:187-98. [DOI: 10.1016/j.jbiotec.2014.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
|
17
|
Wübbeler JH, Hiessl S, Schuldes J, Thürmer A, Daniel R, Steinbüchel A. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate. MICROBIOLOGY-SGM 2014; 160:1401-1416. [PMID: 24739217 DOI: 10.1099/mic.0.078279-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
18
|
Novel characteristics of succinate coenzyme A (Succinate-CoA) ligases: conversion of malate to malyl-CoA and CoA-thioester formation of succinate analogues in vitro. Appl Environ Microbiol 2013; 80:166-76. [PMID: 24141127 DOI: 10.1128/aem.03075-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three succinate coenzyme A (succinate-CoA) ligases (SucCD) from Escherichia coli, Advenella mimigardefordensis DPN7(T), and Alcanivorax borkumensis SK2 were characterized regarding their substrate specificity concerning succinate analogues. Previous studies had suggested that SucCD enzymes might be promiscuous toward succinate analogues, such as itaconate and 3-sulfinopropionate (3SP). The latter is an intermediate of the degradation pathway of 3,3'-dithiodipropionate (DTDP), a precursor for the biotechnical production of polythioesters (PTEs) in bacteria. The sucCD genes were expressed in E. coli BL21(DE3)/pLysS. The SucCD enzymes of E. coli and A. mimigardefordensis DPN7(T) were purified in the native state using stepwise purification protocols, while SucCD from A. borkumensis SK2 was equipped with a C-terminal hexahistidine tag at the SucD subunit. Besides the preference for the physiological substrates succinate, itaconate, ATP, and CoA, high enzyme activity was additionally determined for both enantiomeric forms of malate, amounting to 10 to 21% of the activity with succinate. Km values ranged from 2.5 to 3.6 mM for l-malate and from 3.6 to 4.2 mM for d-malate for the SucCD enzymes investigated in this study. As l-malate-CoA ligase is present in the serine cycle for assimilation of C1 compounds in methylotrophs, structural comparison of these two enzymes as members of the same subsubclass suggested a strong resemblance of SucCD to l-malate-CoA ligase and gave rise to the speculation that malate-CoA ligases and succinate-CoA ligases have the same evolutionary origin. Although enzyme activities were very low for the additional substrates investigated, liquid chromatography/electrospray ionization-mass spectrometry analyses proved the ability of SucCD enzymes to form CoA-thioesters of adipate, glutarate, and fumarate. Since all SucCD enzymes were able to activate 3SP to 3SP-CoA, we consequently demonstrated that the activation of 3SP is not a unique characteristic of the SucCD from A. mimigardefordensis DPN7(T). The essential role of sucCD in the activation of 3SP in vivo was proved by genetic complementation.
Collapse
|
19
|
Schürmann M, Hirsch B, Wübbeler JH, Stöveken N, Steinbüchel A. Succinyl-CoA:3-sulfinopropionate CoA-transferase from Variovorax paradoxus strain TBEA6, a novel member of the class III coenzyme A (CoA)-transferase family. J Bacteriol 2013; 195:3761-73. [PMID: 23772073 PMCID: PMC3754582 DOI: 10.1128/jb.00456-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 11/20/2022] Open
Abstract
The act gene of Variovorax paradoxus TBEA6 encodes a succinyl-CoA:3-sulfinopropionate coenzyme A (CoA)-transferase, Act(TBEA6) (2.8.3.x), which catalyzes the activation of 3-sulfinopropionate (3SP), an intermediate during 3,3'-thiodipropionate (TDP) degradation. In a previous study, accumulation of 3SP was observed in a Tn5::mob-induced mutant defective in growth on TDP. In contrast to the wild type and all other obtained mutants, this mutant showed no growth when 3SP was applied as the sole source of carbon and energy. The transposon Tn5::mob was inserted in a gene showing high homology to class III CoA-transferases. In the present study, analyses of the translation product clearly allocated Act(TBEA6) to this protein family. The predicted secondary structure indicates the lack of a C-terminal α-helix. Act(TBEA6) was heterologously expressed in Escherichia coli Lemo21(DE3) and was then purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography. Analytical size exclusion chromatography revealed a homodimeric structure with a molecular mass of 96 ± 3 kDa. Enzyme assays identified succinyl-CoA, itaconyl-CoA, and glutaryl-CoA as potential CoA donors and unequivocally verified the conversion of 3SP to 3SP-CoA. Kinetic studies revealed an apparent V(max) of 44.6 μmol min(-1) mg(-1) for succinyl-CoA, which corresponds to a turnover number of 36.0 s(-1) per subunit of Act(TBEA6). For 3SP, the apparent V(max) was determined as 46.8 μmol min(-1) mg(-1), which corresponds to a turnover number of 37.7 s(-1) per subunit of Act(TBEA6). The apparent K(m) values were 0.08 mM for succinyl-CoA and 5.9 mM for 3SP. Nonetheless, the V. paradoxus Δact mutant did not reproduce the phenotype of the Tn5::mob-induced mutant. This defined deletion mutant was able to utilize TDP or 3SP as the sole carbon source, like the wild type. Complementation of the Tn5::mob-induced mutant with pBBR1MCS5::acdDPN7 partially restored growth on 3SP, which indicated a polar effect of the Tn5::mob transposon on acd(TBEA6), located downstream of act(TBEA6).
Collapse
Affiliation(s)
- Marc Schürmann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Beatrice Hirsch
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nadine Stöveken
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|