1
|
Sabino YNV, Paiva AD, Fonseca BR, Medeiros JD, Machado ABF. Deciphering probiotic potential: a comprehensive guide to probiogenomic analyses. Future Microbiol 2025:1-12. [PMID: 40227157 DOI: 10.1080/17460913.2025.2492472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/09/2025] [Indexed: 04/15/2025] Open
Abstract
In recent years, the study of probiotics has advanced significantly, driven by growing interest in their potential health benefits and applications in the food and pharmaceutical industries. Probiotics are claimed to enhance gut health, modulate immune responses, improve digestion, synthesize beneficial compounds for the host, and even impact mental health through the gut-brain axis. However, traditional in vitro methods for identifying probiotics have limitations, such as low reproducibility in phenotypic screening, limited capacity to discover new strains, restricted evaluation of safety, and inefficiencies in fully understanding the biological properties responsible for health-promoting effects. Advancements in genomic analysis technology have provided a cost-effective approach to further explore probiotic strains and enhance understanding of the molecular mechanisms driving their beneficial effects in hosts. Here, we describe a comprehensive workflow for probiogenomic analysis aimed at establishing a gold-standard pipeline for screening probiotic potential based on genome sequencing. This pipeline encompasses steps from acquiring genomes to screening for safety-related features, genomic plasticity, and probiotic markers through whole-genome sequencing. In addition, this study outlines the respective methodological approaches and provides the most comprehensive database documented to date, comprising 243 genes potentially associated with probiotic function.
Collapse
Affiliation(s)
- Yasmin Neves Vieira Sabino
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Aline Dias Paiva
- Department of Microbiology, Immunology and Parasitology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Bárbara Ribeiro Fonseca
- Department of Parasitology, Microbiology and Immunology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Julliane Dutra Medeiros
- Department of Biology, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | |
Collapse
|
2
|
Zhang C, Wang L, Liu X, Wang G, Zhao J, Chen W. Bifidobacterium longum subsp. longum relieves loperamide hydrochloride-induced constipation in mice by enhancing bile acid dissociation. Food Funct 2025; 16:297-313. [PMID: 39668691 DOI: 10.1039/d4fo04660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Bifidobacterium species are known for their efficacy in alleviating constipation. This study aimed to compare the constipation-relieving effects of different Bifidobacterium species (Bifidobacterium longum subsp. longum, Bifidobacterium bifidum, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium longum subsp. infantis, and Bifidobacterium adolescentis) and to explore the underlying mechanisms from both the bacterial and host perspectives. We evaluated six Bifidobacterium species for their physiological properties, including growth rate, oligosaccharide utilization, osmotic pressure resistance, cell adhesion, and bile acid dissociation capability. Mice with severe constipation induced by loperamide hydrochloride were treated with these bacteria at a density of 109 CFU per mL for 17 days. Gastrointestinal indices such as fecal water content, time to first black stool defecation, and small intestine propulsion rate were measured to assess constipation relief. Microbiome and metabolome (bile acid and tryptophan) analyses were conducted to elucidate the differences in constipation relief among the species. Our results demonstrated that Bifidobacterium longum subsp. longum exhibited superior physiological traits, including rapid growth, extensive oligosaccharide utilization, and high bile salt dissociation capacity. Notably, only Bifidobacterium longum subsp. longum significantly ameliorated constipation symptoms in the mouse model. Furthermore, this strain markedly restored bile acid and short-chain fatty acid levels in the intestines of constipated mice and altered the composition of the intestinal microbiota. These findings suggest that the enhanced efficacy of Bifidobacterium longum subsp. longum in relieving constipation is associated with its ability to modulate intestinal physiology and microbiota structure and metabolism.
Collapse
Affiliation(s)
- Chenyue Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Meng Z, He Q, Mu L, Feng J, Zhang F, Wu J, Zhou L, Hu Q, Tang X, Li Y. Pullulan-spermine enhance the tolerance of probiotics and immune stimulation of macrophages. Int J Biol Macromol 2025; 287:138417. [PMID: 39662548 DOI: 10.1016/j.ijbiomac.2024.138417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
The application of probiotics as adjunctive therapy in colorectal cancer treatment is hindered by the paucity of strains with specialized functions and the instability of their in vivo efficacy. The design of innovative and simple encapsulation strategies to enhance their stability and efficacy of probiotics has garnered substantial interest. This study investigated four Bifidobacterium longum strains from human feces for tolerance and cytotoxicity, and then synthesized a cationic polysaccharide, pullulan-spermine (PS), for probiotic encapsulation. The results indicated that the encapsulation by PS hold superior protective capacity and elevated the level of TNF-α and IL-12. In vivo studies further confirmed the retention capacity and safety of this probiotic-PS complex. Generally, this research presents an effective probiotic encapsulation strategy that could enhance macrophage immune responses, offering novel insights for probiotic-based therapies in major diseases like colon cancer treatment.
Collapse
Affiliation(s)
- Zihui Meng
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qinghui He
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Litong Mu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiaying Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Fei Zhang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Jiayi Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qingang Hu
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Xuna Tang
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China.
| | - Yanan Li
- Affiliated Hospital of Medical School, Nanjing Stomatological Hospital, Nanjing University Joint Research Center of Nanjing Normal Univerisy and Nanjing Stomatological Hospital, Nanjing 210008, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Dreyer A, Lenz C, Groß U, Bohne W, Zautner AE. Comparative analysis of proteomic adaptations in Enterococcus faecalis and Enterococcus faecium after long term bile acid exposure. BMC Microbiol 2024; 24:110. [PMID: 38570789 PMCID: PMC10988882 DOI: 10.1186/s12866-024-03253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.
Collapse
Affiliation(s)
- Annika Dreyer
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Erich Zautner
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
5
|
Zhang G, He M, Xiao L, Jiao Y, Han J, Li C, Miller MJ, Zhang L. Milk fat globule membrane protects Bifidobacterium longum ssp. infantis ATCC 15697 against bile stress by modifying global transcriptional responses. J Dairy Sci 2024; 107:91-104. [PMID: 37678788 DOI: 10.3168/jds.2023-23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
The milk fat globule membrane (MFGM) can protect probiotic bacteria from bile stress. However, its potential mechanism has not been reported. In this study, the viability, morphology and gene transcriptional response of Bifidobacterium longum ssp. infantis ATCC 15697 (BI_15697) stressed by bile salts with or without MFGM were investigated. It was shown that MFGM alleviated the reduction in BI_15697 population induced by 0.2% porcine bile stress and restored the population to the control levels. MFGM ameliorated the shrunken, fragmented appearance and irregular morphology of BI_15697 and maintained cell integrity disrupted by bile stress. RNA-sequencing results showed that MFGM increased transport of glucose and raffinose and decreased that of branched-chain amino acids (BCAA) in the presence of bile salts. MFGM stimulated the expression of genes involved in the synthesis of raffinose in galactose metabolism and the metabolism of BCAA, suggesting that MFGM stimulated the accumulation of raffinose and BCAA in the presence of bile. In addition, MFGM stimulated the expression of 2 bile efflux transporters under bile stress. Together, the multifactorial response helps BI_15697 excrete bile salts and maintain cellular integrity in response to bile stress. This study proposes a mechanism for the protection of BI_15697 against bile salt stress by MFGM, thereby providing a molecular basis for its application in incorporation of probiotics.
Collapse
Affiliation(s)
- Gongsheng Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingxue He
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Xiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jianchun Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Lili Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Walsh C, Owens RA, Bottacini F, Lane JA, van Sinderen D, Hickey RM. HMO-primed bifidobacteria exhibit enhanced ability to adhere to intestinal epithelial cells. Front Microbiol 2023; 14:1232173. [PMID: 38163079 PMCID: PMC10757668 DOI: 10.3389/fmicb.2023.1232173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
The ability of gut commensals to adhere to the intestinal epithelium can play a key role in influencing the composition of the gut microbiota. Bifidobacteria are associated with a multitude of health benefits and are one of the most widely used probiotics for humans. Enhanced bifidobacterial adhesion may increase host-microbe, microbe-nutrient, and/or microbe-microbe interactions, thereby enabling consolidated health benefits to the host. The objective of this study was to determine the ability of human milk oligosaccharides (HMOs) to enhance bifidobacterial intestinal adhesion in vitro. This study assessed the colonisation-promoting effects of HMOs on four commercial infant-associated Bifidobacterium strains (two B. longum subsp. infantis strains, B. breve and B. bifidum). HT29-MTX cells were used as an in vitro intestinal model for bacterial adhesion. Short-term exposure of four commercial infant-associated Bifidobacterium strains to HMOs derived from breastmilk substantially increased the adherence (up to 47%) of these probiotic strains. Interestingly, when strains were incubated with HMOs as a four-strain combination, the number of viable bacteria adhering to intestinal cells increased by >90%. Proteomic analysis of this multi-strain bifidobacterial mixture revealed that the increased adherence resulting from exposure to HMOs was associated with notable increases in the abundance of sortase-dependent pili and glycosyl hydrolases matched to Bifidobacterium bifidum. This study suggests that HMOs may prime infant gut-associated Bifidobacterium for colonisation to intestinal epithelial cells by influencing the expression of various colonization factors.
Collapse
Affiliation(s)
- Clodagh Walsh
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- Health and Happiness Group, H&H Research, Cork, Ireland
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | | | - Francesca Bottacini
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
- Biological Sciences and ADAPT Research Centre, Munster Technological University, Cork, Ireland
| | | | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland and School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Arjun OK, Prakash T. Identification of conserved genomic signatures specific to Bifidobacterium species colonising the human gut. 3 Biotech 2023; 13:97. [PMID: 36852175 PMCID: PMC9958220 DOI: 10.1007/s13205-023-03492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/25/2023] [Indexed: 02/26/2023] Open
Abstract
Bifidobacterium species are known for their ability to inhabit various habitats and are often regarded as the first colonisers of the human gut. In the present work, we have used comparative genomics to identify conserved genomic signatures specific to Bifidobacterium species associated with the human gut. Our approach discovered five genomic signatures with varying lengths and confidence. Among the predicted five signatures, a 1790 bp multi-drug resistance (MDR) signature was found to be remarkably specific to only those species that can colonise the human gut. The signature codes for a membrane transport protein belonging to the major facilitator superfamily (MFS) generally involved in MDR. Phylogenetic analyses of the MDR signature suggest a lineage-specific evolution of the MDR signature in bifidobacteria colonising the human gut. Functional annotation led to the discovery of two conserved domains in the protein; a catalytic MFS domain involved in the efflux of drugs and toxins, and a regulatory cystathionine-β-synthase (CBS) domain that can interact with adenosyl-carriers. Molecular docking simulation performed with the modelled tertiary structure of the MDR signature revealed the putative functional role of the covalently linked domains. The MFS domain displayed a high affinity towards various protein synthesis inhibitor antibiotics and human bile acids, whereas the C-terminally linked CBS domain exhibited favourable binding with molecular structures of ATP and AMP. Therefore, we believe that the predicted signature represents a niche-specific survival trait involved in bile and antibiotic resistance, imparting an adaptive advantage to the Bifidobacterium species colonising the human gut. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03492-4.
Collapse
Affiliation(s)
- O. K. Arjun
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| | - Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005 India
| |
Collapse
|
8
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Yang L, Chen Y, Bai Q, Chen X, Shao Y, Wang R, He F, Deng G. Protective Effect of Bifidobacterium lactis JYBR-190 on Intestinal Mucosal Damage in Chicks Infected With Salmonella pullorum. Front Vet Sci 2022; 9:879805. [PMID: 35692296 PMCID: PMC9184800 DOI: 10.3389/fvets.2022.879805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Pullorum is one of the most serious diseases that endanger the chicken industry. With the advent of the era of anti-antibiotics in feed, the replacement of antibiotics by probiotics has become the focus and hotspot of related research. In this study, hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to observe the structural changes of intestinal mucosa in chicks infected with Salmonella pullorum, and to analyze TNF-α, IL-10, IFN-γ, proliferating cell nuclear antigen (PCNA), and secreted immunoglobulin A (sIgA) levels. The results showed that the intestinal villus height, villus height to crypt depth ratio (V/C), and muscle layer thickness of duodenum, jejunum and cecum in the JYBR-190 group were significantly higher than those of the infection group and antibiotic group. Furthermore, the levels of PCNA, sIgA and IL-10 in JYBR-190 group were significantly increased, whereas the expression of TNF-α and IFN-γ was significantly decreased. Taken together, Bifidobacterium lactis JYBR-190 has a protective effect on intestinal mucosal damage in chicks infected with Salmonella pullorum.
Collapse
Affiliation(s)
- Liangyu Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yuanhong Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qian Bai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yunteng Shao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Ronghai Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fengping He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
- *Correspondence: Fengping He
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Ganzhen Deng
| |
Collapse
|
10
|
Duboux S, Golliard M, Muller JA, Bergonzelli G, Bolten CJ, Mercenier A, Kleerebezem M. Carbohydrate-controlled serine protease inhibitor (serpin) production in Bifidobacterium longum subsp. longum. Sci Rep 2021; 11:7236. [PMID: 33790385 PMCID: PMC8012564 DOI: 10.1038/s41598-021-86740-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Serine Protease Inhibitor (serpin) protein has been suggested to play a key role in the interaction of bifidobacteria with the host. By inhibiting intestinal serine proteases, it might allow bifidobacteria to reside in specific gut niches. In inflammatory diseases where serine proteases contribute to the innate defense mechanism of the host, serpin may dampen the damaging effects of inflammation. In view of the beneficial roles of this protein, it is important to understand how its production is regulated. Here we demonstrate that Bifidobacterium longum NCC 2705 serpin production is tightly regulated by carbohydrates. Galactose and fructose increase the production of this protein while glucose prevents it, suggesting the involvement of catabolite repression. We identified that di- and oligosaccharides containing galactose (GOS) and fructose (FOS) moieties, including the human milk oligosaccharide Lacto-N-tetraose (LNT), are able to activate serpin production. Moreover, we show that the carbohydrate mediated regulation is conserved within B. longum subsp. longum strains but not in other bifidobacterial taxons harboring the serpin coding gene, highlighting that the serpin regulation circuits are not only species- but also subspecies- specific. Our work demonstrates that environmental conditions can modulate expression of an important effector molecule of B. longum, having potential important implications for probiotic manufacturing and supporting the postulated role of serpin in the ability of bifidobacteria to colonize the intestinal tract.
Collapse
Affiliation(s)
- S Duboux
- Nestlé Research, Lausanne, Switzerland. .,Host-Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| | | | | | | | | | - A Mercenier
- Host-Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - M Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Alessandri G, van Sinderen D, Ventura M. The genus bifidobacterium: From genomics to functionality of an important component of the mammalian gut microbiota running title: Bifidobacterial adaptation to and interaction with the host. Comput Struct Biotechnol J 2021; 19:1472-1487. [PMID: 33777340 PMCID: PMC7979991 DOI: 10.1016/j.csbj.2021.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the genus Bifidobacterium are dominant and symbiotic inhabitants of the mammalian gastrointestinal tract. Being vertically transmitted, bifidobacterial host colonization commences immediately after birth and leads to a phase of host infancy during which bifidobacteria are highly prevalent and abundant to then transit to a reduced, yet stable abundance phase during host adulthood. However, in order to reach and stably colonize their elective niche, i.e. the large intestine, bifidobacteria have to cope with a multitude of oxidative, osmotic and bile salt/acid stress challenges that occur along the gastrointestinal tract (GIT). Concurrently, bifidobacteria not only have to compete with the myriad of other gut commensals for nutrient acquisition, but they also require protection against bacterial viruses. In this context, Next-Generation Sequencing (NGS) techniques, allowing large-scale comparative and functional genome analyses have helped to identify the genetic strategies that bifidobacteria have developed in order to colonize, survive and adopt to the highly competitive mammalian gastrointestinal environment. The current review is aimed at providing a comprehensive overview concerning the molecular strategies on which bifidobacteria rely to stably and successfully colonize the mammalian gut.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
12
|
Engineer probiotic bifidobacteria for food and biomedical applications - Current status and future prospective. Biotechnol Adv 2020; 45:107654. [DOI: 10.1016/j.biotechadv.2020.107654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/14/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
|
13
|
The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect Immun 2020; 88:IAI.00865-19. [PMID: 32661122 DOI: 10.1128/iai.00865-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.
Collapse
|
14
|
Kelly SM, Lanigan N, O'Neill IJ, Bottacini F, Lugli GA, Viappiani A, Turroni F, Ventura M, van Sinderen D. Bifidobacterial biofilm formation is a multifactorial adaptive phenomenon in response to bile exposure. Sci Rep 2020; 10:11598. [PMID: 32665665 PMCID: PMC7360559 DOI: 10.1038/s41598-020-68179-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Noreen Lanigan
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Ian J O'Neill
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
15
|
In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Food Res Int 2019; 119:813-821. [DOI: 10.1016/j.foodres.2018.10.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/16/2023]
|
16
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
|
18
|
Xu Q, Zhai Z, An H, Yang Y, Yin J, Wang G, Ren F, Hao Y. The MarR Family Regulator BmrR Is Involved in Bile Tolerance of Bifidobacterium longum BBMN68 via Controlling the Expression of an ABC Transporter. Appl Environ Microbiol 2019; 85:e02453-18. [PMID: 30478236 PMCID: PMC6344635 DOI: 10.1128/aem.02453-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 11/20/2022] Open
Abstract
In order to colonize the human gastrointestinal tract and exert their beneficial effects, bifidobacteria must effectively cope with toxic bile salts in the intestine; however, the molecular mechanism underlying bile tolerance is poorly understood. In this study, heterologous expression of a MarR family transcriptional regulator, BmrR, significantly reduced the ox bile resistance of Lactococcus lactis NZ9000, suggesting that BmrR might play a role in the bile stress response. In silico analysis combined with reverse transcription-PCR assays demonstrated that bmrR was cotranscribed with bmrA and bmrB, which encoded multidrug resistance (MDR) ABC transporters. Promoter prediction and electrophoretic mobility shift assays revealed that BmrR could autoregulate the bmrRAB operon by binding to the bmr box (ATTGTTG-6nt-CAACAAT) in the promoter region. Moreover, heterologous expression of bmrA and bmrB in L. lactis yielded 20.77-fold higher tolerance to 0.10% ox bile, compared to the wild-type strain. In addition, ox bile could disrupt the DNA binding activity of BmrR as a ligand. Taken together, our findings indicate that the bmrRAB operon is autoregulated by the transcriptional regulator BmrR and ox bile serves as an inducer to activate the bile efflux transporter BmrAB in response to bile stress in Bifidobacterium longum BBMN68.IMPORTANCE Bifidobacteria are natural inhabitants of the human intestinal tract. Some bifidobacterial strains are used as probiotics in fermented dairy production because of their health-promoting effects. Following consumption, bifidobacteria colonize the lower intestinal tract, where the concentrations of bile salts remain nearly 0.05% to 2.0%. Bile salts, as detergent-like antimicrobial compounds, can cause cellular membrane disruption, protein misfolding, and DNA damage. Therefore, tolerance to physiological bile stress is indeed essential for bifidobacteria to survive and to exert probiotic effects in the gastrointestinal tract. In B. longum BBMN68, the MarR-type regulator BmrR was involved in the bile stress response by autoregulating the bmrRAB operon, and ox bile as an inducer could increase the expression of the BmrAB transporter to enhance the bile tolerance of BBMN68. Our study represents a functional analysis of the bmrRAB operon in the bile stress response, which will provide new insights into bile tolerance mechanisms in Bifidobacterium and other bacteria.
Collapse
Affiliation(s)
- Qi Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Food Science and Technology, University of California, Davis, Davis, California, USA
| | - Haoran An
- Center for Infectious Disease Research, Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jia Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Beijing, China
| |
Collapse
|
19
|
Willson BJ, Dalzell L, Chapman LNM, Thomas GH. Enhanced functionalisation of major facilitator superfamily transporters via fusion of C-terminal protein domains is both extensive and varied in bacteria. MICROBIOLOGY-SGM 2019; 165:419-424. [PMID: 30657446 DOI: 10.1099/mic.0.000771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolution of gene fusions that result in covalently linked protein domains is widespread in bacteria, where spatially coupling domain functionalities can have functional advantages in vivo. Fusions to integral membrane proteins are less widely studied but could provide routes to enhance membrane function in synthetic biology. We studied the major facilitator superfamily (MFS), as the largest family of transporter proteins in bacteria, to examine the extent and nature of fusions to these proteins. A remarkably diverse variety of fusions are identified and the 8 most abundant examples are described, including additional enzymatic domains and a range of sensory and regulatory domains, many not previously described. Significantly, these fusions are found almost exclusively as C-terminal fusions, revealing that the usually cytoplasmic C-terminal end of MFS protein would the permissive end for engineering synthetic fusions to other cytoplasmic proteins.
Collapse
Affiliation(s)
- Benjamin J Willson
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Lindsey Dalzell
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Liam N M Chapman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
20
|
Yan M, Wang BH, Xu X, der Meister T, Tabγač HT, Hwang FF, Liu Z. Extrusion of Dissolved Oxygen by Exopolysaccharide From Leuconostoc mesenteroides and Its Implications in Relief of the Oxygen Stress. Front Microbiol 2018; 9:2467. [PMID: 30405549 PMCID: PMC6202936 DOI: 10.3389/fmicb.2018.02467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/26/2018] [Indexed: 01/12/2023] Open
Abstract
Strains of Leuconostoc are generally facultatively anaerobic and exposure to oxygen might be detrimental; therefore, strategies to combat the oxygen stress are essential for these bacteria to survive and flourish in the oxygenic atmosphere. Despite the extensive applications in industry, the fundamental issues concerning the aerobic life of Leuconostocs remain to be addressed. In this study, we have demonstrated that Leuconostoc mesenteroides CGMCC10064 cultivated in sucrose medium would acquire a growth advantage over that in glucose medium under oxygenic conditions, as reflected by more viable cells and less accumulation of reactive oxygen species. Further analysis showed that the growth advantage was dependent on exopolysaccharide (EPS) synthesized by a secreted glucansucrase. Determination of the dissolved oxygen in the culture suggested that the growth improvement was mediated by extrusion of dissolved oxygen from the aqueous circumstances. Growth experiments performed with the purified EPS showed that supplementation of 5 g/L EPS in the medium could improve the aerobic growth of L. mesenteroides by ∼10-fold. Moreover, the purified EPS was also effective in promoting the aerobic growth of oxygen-sensitive Lactobacillus and Bifidobacterium. These results demonstrate that EPS of L. mesenteroides plays a critical role in relief of the oxygen stress, and suggest the potential of the EPS in manufacture as well as preservation of oxygen-sensitive probiotics.
Collapse
Affiliation(s)
- Minghui Yan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Bing-hua Wang
- The Department of Clinical Laboratory, Central Laboratory, Jing’an District Center Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xiaofen Xu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Tsiba der Meister
- Diagnosis Laboratory, Institut Louis Malardé, Papeete, French Polynesia
- Department of Internal Medicine, French Polynesia Hospital Center, Pirae, French Polynesia
| | - Hei-tsai Tabγač
- Diagnosis Laboratory, Institut Louis Malardé, Papeete, French Polynesia
| | - Fat-fat Hwang
- Diagnosis Laboratory, Institut Louis Malardé, Papeete, French Polynesia
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
- Synergetic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Bustos AY, Font de Valdez G, Fadda S, Taranto MP. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 2018; 112:250-262. [DOI: 10.1016/j.foodres.2018.06.035] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/14/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023]
|
22
|
Lokesh D, Parkesh R, Kammara R. Bifidobacterium adolescentis is intrinsically resistant to antitubercular drugs. Sci Rep 2018; 8:11897. [PMID: 30093677 PMCID: PMC6085307 DOI: 10.1038/s41598-018-30429-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple mutations in the β subunit of the RNA polymerase (rpoβ) of Mycobacterium tuberculosis (Mtb) are the primary cause of resistance to rifamycin (RIF). In the present study, bifidobacterial rpoβ sequences were analyzed to characterize the mutations that contribute to the development of intrinsic resistance to RIF, isoniazid, streptomycin and pyrazinamide. Sequence variations, which mapped to cassettes 1 and 2 of the rpoβ pocket, are also found in multidrug-resistant Mtb (MDR Mtb). Growth curves in the presence of osmolytes and different concentrations of RIF showed that the bacteria adapted rapidly by shortening the growth curve lag time. Insight into the adapted rpoβ DNA sequences revealed that B. adolescentis harbored mutations both in the RIF pocket and in regions outside the pocket. The minimum inhibitory concentrations (MICs) and mutant prevention concentrations (MPCs) indicated that B. longum, B. adolescentis and B. animalis are resistant to antitubercular drugs. 3D-homology modeling and binding interaction studies using computational docking suggested that mutants had reduced binding affinity towards RIF. RIF-exposed/resistant bacteria exhibited variant protein profiles along with morphological differences, such as elongated and branched cells, surface conversion from rough to smooth, and formation of a concentrating ring.
Collapse
Affiliation(s)
- Dhanashree Lokesh
- Senior Research Fellow, Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysore, 20, India
| | - Raman Parkesh
- Principal Scientist, Protein Science Center, Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Rajagopal Kammara
- Senior Research Fellow, Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysore, 20, India.
| |
Collapse
|
23
|
Kato S, Tobe H, Matsubara H, Sawada M, Sasaki Y, Fukiya S, Morita N, Yokota A. The membrane phospholipid cardiolipin plays a pivotal role in bile acid adaptation by Lactobacillus gasseri JCM1131 T. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:403-412. [PMID: 29883797 DOI: 10.1016/j.bbalip.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 06/03/2018] [Indexed: 01/26/2023]
Abstract
Bile acids exhibit strong antimicrobial activity as natural detergents, and are involved in lipid digestion and absorption. We investigated the mechanism of bile acid adaptation in Lactobacillus gasseri JCM1131T. Exposure to sublethal concentrations of cholic acid (CA), a major bile acid in humans, resulted in development of resistance to otherwise-lethal concentrations of CA by this intestinal lactic acid bacterium. As this adaptation was accompanied by decreased cell-membrane damage, we analyzed the membrane lipid composition of L. gasseri. Although there was no difference in the proportions of glycolipids (~70%) and phospholipids (~20%), adaptation resulted in an increased abundance of long-sugar-chain glycolipids and a 100% increase in cardiolipin (CL) content (to ~50% of phospholipids) at the expense of phosphatidylglycerol (PG). In model vesicles, the resistance of PG vesicles to solubilization by CA increased with increasing CL/PG ratio. Deletion of the two putative CL synthase genes, the products of which are responsible for CL synthesis from PG, decreased the CL content of the mutants, but did not affect their ability to adapt to CA. Exposure to CA restored the CL content of the two single-deletion mutants, likely due to the activities of the remaining CL synthase. In contrast, the CL content of the double-deletion mutant was not restored, and the lipid composition was modified such that PG predominated (~45% of total lipids) at the expense of glycolipids. Therefore, CL plays important roles in bile acid resistance and maintenance of the membrane lipid composition in L. gasseri.
Collapse
Affiliation(s)
- Shinji Kato
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Haruhi Tobe
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Hiroki Matsubara
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Mariko Sawada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Yasuko Sasaki
- Laboratory of Fermented Foods, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan.
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido 062-8517, Japan.
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| |
Collapse
|
24
|
Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2017; 36:682-690. [PMID: 29248683 DOI: 10.1016/j.biotechadv.2017.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.
Collapse
Affiliation(s)
- Šárka Horáčková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Milada Plocková
- Department of Dairy, Fat and Cosmetics, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
26
|
Vinderola G, Gueimonde M, Gomez-Gallego C, Delfederico L, Salminen S. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Lanigan N, Bottacini F, Casey PG, O'Connell Motherway M, van Sinderen D. Genome-Wide Search for Genes Required for Bifidobacterial Growth under Iron-Limitation. Front Microbiol 2017; 8:964. [PMID: 28620359 PMCID: PMC5449479 DOI: 10.3389/fmicb.2017.00964] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model.
Collapse
Affiliation(s)
- Noreen Lanigan
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | - Francesca Bottacini
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | - Pat G Casey
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| | | | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College CorkCork, Ireland
| |
Collapse
|
28
|
Watanabe M, Fukiya S, Yokota A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents. J Lipid Res 2017; 58:1143-1152. [PMID: 28404640 DOI: 10.1194/jlr.m075143] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/03/2017] [Indexed: 01/01/2023] Open
Abstract
In addition to functioning as detergents that aid digestion of dietary lipids in the intestine, some bile acids have been shown to exhibit antimicrobial activity. However, detailed information on the bactericidal activities of the diverse molecular species of bile acid in humans and rodents is largely unknown. Here, we investigated the toxicity of 14 typical human and rodent free bile acids (FBAs) by monitoring intracellular pH, membrane integrity, and viability of a human intestinal bacterium, Bifidobacterium breve Japan Collection of Microorganisms (JCM) 1192T, upon exposure to these FBAs. Of all FBAs evaluated, deoxycholic acid (DCA) and chenodeoxycholic acid displayed the highest toxicities. Nine FBAs common to humans and rodents demonstrated that α-hydroxy-type bile acids are more toxic than their oxo-derivatives and β-hydroxy-type epimers. In five rodent-specific FBAs, β-muricholic acid and hyodeoxycholic acid showed comparable toxicities at a level close to DCA. Similar trends were observed for the membrane-damaging effects and bactericidal activities to Blautia coccoides JCM 1395T and Bacteroides thetaiotaomicron DSM 2079T, commonly represented in the human and rodent gut microbiota. These findings will help us to determine the fundamental properties of FBAs and better understand the role of FBAs in the regulation of gut microbiota composition.
Collapse
Affiliation(s)
- Masamichi Watanabe
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
29
|
Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract. Sci Rep 2016; 6:30768. [PMID: 27468806 PMCID: PMC4965825 DOI: 10.1038/srep30768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.
Collapse
|
30
|
Soverini M, Rampelli S, Turroni S, Schnorr SL, Quercia S, Castagnetti A, Biagi E, Brigidi P, Candela M. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome. Front Microbiol 2016; 7:1058. [PMID: 27462302 PMCID: PMC4940381 DOI: 10.3389/fmicb.2016.01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022] Open
Abstract
Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.
Collapse
Affiliation(s)
- Matteo Soverini
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | | | - Sara Quercia
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Andrea Castagnetti
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| |
Collapse
|
31
|
Arboleya S, Stanton C, Ryan CA, Dempsey E, Ross PR. Bosom Buddies: The Symbiotic Relationship Between Infants and Bifidobacterium longum ssp. longum and ssp. infantis. Genetic and Probiotic Features. Annu Rev Food Sci Technol 2016; 7:1-21. [PMID: 26934170 DOI: 10.1146/annurev-food-041715-033151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal microbiota is a complex community that plays an important role in human health from the initial steps of its establishment. Its microbial composition has been suggested to result from selective pressures imposed by the host and is modulated by competition among its members. Bifidobacterium longum is one of the most abundant species of the Bifidobacterium genus in the gut microbiota of healthy breast-fed infants and adults. The recent advancements of 'omics techniques have facilitated the genetic and functional studies of different gut microbiota members. They have revealed the complex genetic pathways used to metabolize different compounds that likely contribute to the competitiveness and persistence of B. longum in the colon. The discovery of a genomic island in B. longum ssp. infantis that encodes specific enzymes for the metabolism of human milk oligosaccharides suggests a specific ecological adaptation. Moreover, B. longum is widely used as probiotic, and beneficial effects in infant health have been reported in several studies.
Collapse
Affiliation(s)
- Silvia Arboleya
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; ,
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland; ,
| | - Paul R Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; , .,School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
32
|
Boente RF, Pauer H, Silva DN, Filho JS, Sandim V, Antunes LCM, Ferreira RBR, Zingali RB, Domingues RM, Lobo LA. Differential proteomic analysis of outer membrane enriched extracts of Bacteroides fragilis grown under bile salts stress. Anaerobe 2016; 39:84-90. [DOI: 10.1016/j.anaerobe.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023]
|
33
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
34
|
Liu Y, An H, Zhang J, Zhou H, Ren F, Hao Y. Functional role of tlyC1 encoding a hemolysin-like protein from Bifidobacterium longum BBMN68 in bile tolerance. FEMS Microbiol Lett 2014; 360:167-73. [PMID: 25227940 DOI: 10.1111/1574-6968.12601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/01/2014] [Accepted: 09/12/2014] [Indexed: 01/02/2023] Open
Abstract
Bifidobacteria are normal inhabitants of the human gut, and members of which are generally considered to be probiotic. Before exerting their beneficial properties, they must survive and persist in the physiological concentrations (0.05-2%) of bile in the gut. In this work, the functional role of tlyC1 encoding a hemolysin-like protein from Bifidobacterium longum BBMN68 in bile tolerance was tested. Analysis using the program TMHMM and homologous alignment indicated that TlyC1 is a nontransporter membrane protein and is conserved in many bifidobacteria. Heterologous expression of tlyC1 in Lactococcus lactis NZ9000 was shown to confer 45-fold higher tolerance to 0.15% ox-bile. Notably, the recombinant strains showed threefold higher survival when exposed to sublethal concentration of TCA and TDCA, while no significant change was observed when exposed to GCA and GDCA. Furthermore, real-time quantitative PCR demonstrated that the transcription of tlyC1 was up-regulated c. 2.5- and 2.7-fold in B. longum BBMN68 exposed to sublethal concentration of TCA and TDCA, while no significant change was observed with GCA and GDCA challenges. This study indicated that tlyC1 was specifically induced by tauroconjugates, which provided enhanced resistance to sodium taurocholate and sodium taurodeoxycholate.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
35
|
Bifidobacteria-host interactions--an update on colonisation factors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:960826. [PMID: 25295282 PMCID: PMC4177770 DOI: 10.1155/2014/960826] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are one of the predominant bacterial groups of the human intestinal microbiota and have important functional properties making them interesting for the food and dairy industries. Numerous in vitro and preclinical studies have shown beneficial effects of particular bifidobacterial strains or strain combinations on various health parameters of their hosts. This indicates the potential of bifidobacteria in alternative or supplementary therapeutic approaches in a number of diseased states. Based on these observations, bifidobacteria have attracted considerable interest by the food, dairy, and pharmaceutical industries and they are widely used as so-called probiotics. As a consequence of the rapidly increasing number of available bifidobacterial genome sequences and their analysis, there has been substantial progress in the identification of bifidobacterial structures involved in colonisation of and interaction with the host. With the present review, we aim to provide an update on the current knowledge on the mechanisms by which bifidobacteria colonise their hosts and exert health promoting effects.
Collapse
|
36
|
Bottacini F, Ventura M, van Sinderen D, O'Connell Motherway M. Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact 2014; 13 Suppl 1:S4. [PMID: 25186128 PMCID: PMC4155821 DOI: 10.1186/1475-2859-13-s1-s4] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The human gastrointestinal tract represents an environment which is a densely populated home for a microbiota that has evolved to positively contribute to host health. At birth the essentially sterile gastrointestinal tract (GIT) is rapidly colonized by microorganisms that originate from the mother and the surrounding environment. Within a short timeframe a microbiota establishes within the (breastfed) infant's GIT where bifidobacteria are among the dominant members, although their numerical dominance disappears following weaning. The numerous health benefits associated with bifidobacteria, and the consequent commercial relevance resulting from their incorporation into functional foods, has led to intensified research aimed at the molecular understanding of claimed probiotic attributes of this genus. In this review we provide the current status on the diversity and ecology of bifidobacteria. In addition, we will discuss the molecular mechanisms that allow this intriguing group of bacteria to colonize and persist in the GIT, so as to facilitate interaction with its host.
Collapse
|
37
|
Johnson BR, Klaenhammer TR. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek 2014; 106:141-56. [PMID: 24748373 PMCID: PMC4064118 DOI: 10.1007/s10482-014-0171-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
For thousands of years, humans have safely consumed microorganisms through fermented foods. Many of these bacteria are considered probiotics, which act through diverse mechanisms to confer a health benefit to the host. However, it was not until the availability of whole-genome sequencing and the era of genomics that mechanisms of probiotic efficacy could be discovered. In this review, we explore the history of the probiotic concept and the current standard of integrated genomic techniques to discern the complex, beneficial relationships between probiotic microbes and their hosts.
Collapse
Affiliation(s)
- Brant R. Johnson
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
| | - Todd R. Klaenhammer
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
38
|
An H, Douillard FP, Wang G, Zhai Z, Yang J, Song S, Cui J, Ren F, Luo Y, Zhang B, Hao Y. Integrated transcriptomic and proteomic analysis of the bile stress response in a centenarian-originated probiotic Bifidobacterium longum BBMN68. Mol Cell Proteomics 2014; 13:2558-72. [PMID: 24965555 DOI: 10.1074/mcp.m114.039156] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bifidobacteria are natural inhabitants of the human gastrointestinal tract and well known for their health-promoting effects. Tolerance to bile stress is crucial for bifidobacteria to survive in the colon and to exert their beneficial actions. In this work, RNA-Seq transcriptomic analysis complemented with proteomic analysis was used to investigate the cellular response to bile in Bifidobacterium longum BBMN68. The transcript levels of 236 genes were significantly changed (≥ threefold, p < 0.001) and 44 proteins were differentially abundant (≥1.6-fold, p < 0.01) in B. longum BBMN68 when exposed to 0.75 g l(-1) ox-bile. The hemolysin-like protein and bile efflux systems were significantly over produced, which might prevent bile adsorption and exclude bile, respectively. The cell membrane composition was modified probably by an increase of cyclopropane fatty acid and a decrease of transmembrane proteins, resulting in a cell membrane more impermeable to bile salts. Our hypothesis was later confirmed by surface hydrophobicity assay. The transcription of genes related to xylose utilization and bifid shunt were up-regulated, which increased the production of ATP and reducing equivalents to cope with bile-induced damages in a xylan-rich colon environment. Bile salts signal the B. longum BBMN68 to gut entrance and enhance the expression of esterase and sortase associated with adhesion and colonization in intestinal tract, which was supported by a fivefold increased adhesion ability to HT-29 cells by BBMN68 upon bile exposure. Notably, bacterial one-hybrid and EMSA assay revealed that the two-component system senX3-regX3 controlled the expression of pstS in bifidobacteria and the role of this target gene in bile resistance was further verified by heterologous expression in Lactococcus lactis. Taken altogether, this study established a model for global response mechanisms in B. longum to bile.
Collapse
Affiliation(s)
- Haoran An
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - François P Douillard
- §Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Guohong Wang
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengyuan Zhai
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jin Yang
- ¶Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuhui Song
- ¶Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianyun Cui
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bing Zhang
- ¶Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanling Hao
- From the ‡Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| |
Collapse
|
39
|
Stenico V, Baffoni L, Gaggìa F, Biavati B. Validation of candidate reference genes in Bifidobacterium adolescentis for gene expression normalization. Anaerobe 2014; 27:34-9. [DOI: 10.1016/j.anaerobe.2014.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
40
|
Suzuki S, Honda H, Suganuma H, Saito T, Yajima N. Growth and bile tolerance of Lactobacillus brevis strains isolated from Japanese pickles in artificial digestive juices and contribution of cell-bound exopolysaccharide to cell aggregation. Can J Microbiol 2014; 60:139-45. [DOI: 10.1139/cjm-2013-0774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-bound exopolysaccharide (EPS) of the aggregable strain Lactobacillus brevis KB290 isolated from traditional Japanese pickles has been reported to protect against the effects of bile. However, there are no reports of bile tolerance mechanisms for other L. brevis strains that have aggregability. To elucidate the mechanism of bile tolerance of L. brevis KB290, we found 8 aggregable L. brevis strains out of 121 L. brevis strains isolated from traditional Japanese fermented pickles. We estimated their growth in artificial digestive juice and the amount of cell-bound EPS. We found 3 types of aggregation for these strains: filiform (<1 mm), medium floc (1–5 mm), or large floc (>5 mm). There was no significant difference in growth between nonaggregable and aggregable strains in the artificial digestive juice. The large floc strains selected from the aggregation strains showed significantly higher growth in the artificial digestive juice than nonaggregable strains. In medium and large floc strains, cell-bound EPS, mainly consisting of glucose, N-acetylglucosamine, and N-acetylmannosamine, were observed. The amount of EPS and each strain’s growth index showed a positive correlation. We conclude that aggregable L. brevis strains were also protected by cell-bound EPS.
Collapse
Affiliation(s)
- Shigenori Suzuki
- Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara Tochigi, 329-2762, Japan
| | - Hiroyuki Honda
- Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara Tochigi, 329-2762, Japan
| | - Hiroyuki Suganuma
- Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara Tochigi, 329-2762, Japan
| | - Tadao Saito
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba, Sendai 981-8555, Japan
| | - Nobuhiro Yajima
- Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara Tochigi, 329-2762, Japan
| |
Collapse
|
41
|
Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 2013; 4:396. [PMID: 24399996 PMCID: PMC3872040 DOI: 10.3389/fmicb.2013.00396] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 12/03/2013] [Indexed: 11/13/2022] Open
Abstract
Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile.
Collapse
Affiliation(s)
- Lorena Ruiz
- Laboratory of Probiotics and Prebiotics, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Asturias, Spain
| | - Abelardo Margolles
- Laboratory of Probiotics and Prebiotics, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Asturias, Spain
| | - Borja Sánchez
- Laboratory of Probiotics and Prebiotics, Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas Asturias, Spain
| |
Collapse
|
42
|
|
43
|
Catabolism of glucose and lactose in Bifidobacterium animalis subsp. lactis, studied by 13C Nuclear Magnetic Resonance. Appl Environ Microbiol 2013; 79:7628-38. [PMID: 24077711 DOI: 10.1128/aem.02529-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bifidobacteria are widely used as probiotics in several commercial products; however, to date there is little knowledge about their carbohydrate metabolic pathways. In this work, we studied the metabolism of glucose and lactose in the widely used probiotic strain Bifidobacterium animalis subsp. lactis BB-12 by in vivo (13)C nuclear magnetic resonance (NMR) spectroscopy. The metabolism of [1-(13)C]glucose was characterized in cells grown in glucose as the sole carbon source. Moreover, the metabolism of lactose specifically labeled with (13)C on carbon 1 of the glucose or the galactose moiety was determined in suspensions of cells grown in lactose. These experiments allowed the quantification of some intermediate and end products of the metabolic pathways, as well as determination of the consumption rate of carbon sources. Additionally, the labeling patterns in metabolites derived from the metabolism of glucose specifically labeled with (13)C on carbon 1, 2, or 3 in cells grown in glucose or lactose specifically labeled in carbon 1 of the glucose moiety ([1-(13)Cglucose]lactose), lactose specifically labeled in carbon 1 of the galactose moiety ([1-(13)Cgalactose]lactose), and [1-(13)C]glucose in lactose-grown cells were determined in cell extracts by (13)C NMR. The NMR analysis showed that the recovery of carbon was fully compatible with the fructose 6-phosphate, or bifid, shunt. The activity of lactate dehydrogenase, acetate kinase, fructose 6-phosphate phosphoketolase, and pyruvate formate lyase differed significantly between glucose and lactose cultures. The transcriptional analysis of several putative glucose and lactose transporters showed a significant induction of Balat_0475 in the presence of lactose, suggesting a role for this protein as a lactose permease. This report provides the first in vivo experimental evidence of the metabolic flux distribution in the catabolic pathway of glucose and lactose in bifidobacteria and shows that the bifid shunt is the only pathway involved in energy recruitment from these two sugars. On the basis of our experimental results, a model of sugar metabolism in B. animalis subsp. lactis is proposed.
Collapse
|
44
|
Suzuki S, Yakabe T, Suganuma H, Fukao M, Saito T, Yajima N. Cell-bound exopolysaccharides of Lactobacillus brevis KB290: protective role and monosaccharide composition. Can J Microbiol 2013; 59:549-55. [PMID: 23898998 DOI: 10.1139/cjm-2013-0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the survivability of Lactobacillus brevis KB290 and derivative strain KB392 in artificial digestive juices and bile salts. The strains have similar membrane fatty acids but different amounts of cell-bound exopolysaccharides (EPS). In artificial digestive juices, KB290 showed significantly higher survivability than KB392, and homogenization, which reduced the amount of EPS in KB290 but not in KB392, reduced the survivability only of KB290. In bile salts, KB290 showed significantly higher survivability than KB392, and cell-bound EPS extraction with EDTA reduced the survivability of only KB290. Transmission electron microscopy showed there to be a greater concentration of cell-bound EPS in KB290 than in either KB392 or EDTA-treated or homogenized KB290. We conclude that KB290's cell-bound EPS (which high performance liquid chromatography showed to be made up of glucose and N-acetylglucosamine) played an important role in bile salt tolerance.
Collapse
Affiliation(s)
- Shigenori Suzuki
- Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|
46
|
González-Rodríguez I, Ruiz L, Gueimonde M, Margolles A, Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol Lett 2012. [DOI: 10.1111/1574-6968.12056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Irene González-Rodríguez
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Villaviciosa; Asturias; Spain
| |
Collapse
|
47
|
|
48
|
Accessing the inaccessible: molecular tools for bifidobacteria. Appl Environ Microbiol 2012; 78:5035-42. [PMID: 22582076 DOI: 10.1128/aem.00551-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacteria are an important group of the human intestinal microbiota that have been shown to exert a number of beneficial probiotic effects on the health status of their host. Due to these effects, bifidobacteria have attracted strong interest in health care and food industries for probiotic applications and several species are listed as so-called "generally recognized as safe" (GRAS) microorganisms. Moreover, recent studies have pointed out their potential as an alternative or supplementary strategy in tumor therapy or as live vaccines. In order to study the mechanisms by which these organisms exert their beneficial effects and to generate recombinant strains that can be used as drug delivery vectors or live vaccines, appropriate molecular tools are indispensable. This review provides an overview of the currently available methods and tools to generate recombinant strains of bifidobacteria. The currently used protocols for transformation of bifidobacteria, as well as replicons, selection markers, and determinants of expression, will be summarized. We will further discuss promoters, terminators, and localization signals that have been used for successful generation of expression vectors.
Collapse
|
49
|
Ruiz L, O'Connell-Motherway M, Zomer A, de los Reyes-Gavilán CG, Margolles A, van Sinderen D. A bile-inducible membrane protein mediates bifidobacterial bile resistance. Microb Biotechnol 2012; 5:523-35. [PMID: 22296641 PMCID: PMC3815329 DOI: 10.1111/j.1751-7915.2011.00329.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bbr_0838 from Bifidobacterium breve UCC2003 is predicted to encode a 683 residue membrane protein, containing both a permease domain that displays similarity to transporters belonging to the major facilitator superfamily, as well as a CBS (cystathionine beta synthase) domain. The high level of similarity to bile efflux pumps from other bifidobacteria suggests a significant and general role for Bbr_0838 in bile tolerance. Bbr_0838 transcription was shown to be monocistronic and strongly induced upon exposure to bile. Further analysis delineated the transcriptional start site and the minimal region required for promoter activity and bile regulation. Insertional inactivation of Bbr_0838 in B. breve UCC2003 resulted in a strain, UCC2003:838800, which exhibited reduced survival upon cholate exposure as compared with the parent strain, a phenotype that was reversed when a functional, plasmid‐encoded Bbr_0838 gene was introduced into UCC2003:838800. Transcriptome analysis of UCC2003:838800 grown in the presence or absence of bile demonstrated that transcription of Bbr_0832, which is predicted to encode a macrolide efflux transporter gene, was significantly increased in the presence of bile, representing a likely compensatory mechanism for bile removal in the absence of Bbr_0838. This study represents the first in‐depth analysis of a bile‐inducible locus in bifidobacteria, identifying a key gene relevant for bifidobacterial bile tolerance.
Collapse
Affiliation(s)
- Lorena Ruiz
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias, Villaviciosa, Asturias, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics. Appl Environ Microbiol 2011; 78:1123-31. [PMID: 22156415 DOI: 10.1128/aem.06060-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tolerance of gut commensals to bile salt exposure is an important feature for their survival in and colonization of the intestinal environment. A transcriptomic approach was employed to study the response of Bifidobacterium breve UCC2003 to bile, allowing the identification of a number of bile-induced genes with a range of predicted functions. The potential roles of a selection of these bile-inducible genes in bile protection were analyzed following heterologous expression in Lactococcus lactis. Genes encoding three transport systems belonging to the major facilitator superfamily (MFS), Bbr_0838, Bbr_0832, and Bbr_1756, and three ABC-type transporters, Bbr_0406-0407, Bbr_1804-1805, and Bbr_1826-1827, were thus investigated and shown to provide enhanced resistance and survival to bile exposure. This work significantly improves our understanding as to how bifidobacteria respond to and survive bile exposure.
Collapse
|