1
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
2
|
Wang T, Balla B, Kovács S, Kereszt A. Varietas Delectat: Exploring Natural Variations in Nitrogen-Fixing Symbiosis Research. FRONTIERS IN PLANT SCIENCE 2022; 13:856187. [PMID: 35481136 PMCID: PMC9037385 DOI: 10.3389/fpls.2022.856187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen-fixing symbiosis between leguminous plants and soil bacteria collectively called rhizobia plays an important role in the global nitrogen cycle and is an essential component of sustainable agriculture. Genetic determinants directing the development and functioning of the interaction have been identified with the help of a very limited number of model plants and bacterial strains. Most of the information obtained from the study of model systems could be validated on crop plants and their partners. The investigation of soybean cultivars and different rhizobia, however, has revealed the existence of ineffective interactions between otherwise effective partners that resemble gene-for-gene interactions described for pathogenic systems. Since then, incompatible interactions between natural isolates of model plants, called ecotypes, and different bacterial partner strains have been reported. Moreover, diverse phenotypes of both bacterial mutants on different host plants and plant mutants with different bacterial strains have been described. Identification of the genetic factors behind the phenotypic differences did already and will reveal novel functions of known genes/proteins, the role of certain proteins in some interactions, and the fine regulation of the steps during nodule development.
Collapse
Affiliation(s)
- Ting Wang
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Benedikta Balla
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Szilárd Kovács
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Attila Kereszt
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
3
|
Glycine Cleavage System and cAMP Receptor Protein Co-Regulate CRISPR/ cas3 Expression to Resist Bacteriophage. Viruses 2020; 12:v12010090. [PMID: 31941083 PMCID: PMC7019758 DOI: 10.3390/v12010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
The CRISPR/Cas system protects bacteria against bacteriophage and plasmids through a sophisticated mechanism where cas operon plays a crucial role consisting of cse1 and cas3. However, comprehensive studies on the regulation of cas3 operon of the Type I-E CRISPR/Cas system are scarce. Herein, we investigated the regulation of cas3 in Escherichia coli. The mutation in gcvP or crp reduced the CRISPR/Cas system interference ability and increased bacterial susceptibility to phage, when the casA operon of the CRISPR/Cas system was activated. The silence of the glycine cleavage system (GCS) encoded by gcvTHP operon reduced cas3 expression. Adding N5, N10-methylene tetrahydrofolate (N5, N10-mTHF), which is the product of GCS-catalyzed glycine, was able to activate cas3 expression. In addition, a cAMP receptor protein (CRP) encoded by crp activated cas3 expression via binding to the cas3 promoter in response to cAMP concentration. Since N5, N10-mTHF provides one-carbon unit for purine, we assumed GCS regulates cas3 through associating with CRP. It was evident that the mutation of gcvP failed to further reduce the cas3 expression with the crp deletion. These results illustrated a novel regulatory pathway which GCS and CRP co-regulate cas3 of the CRISPR/Cas system and contribute to the defence against invasive genetic elements, where CRP is indispensable for GCS regulation of cas3 expression.
Collapse
|
4
|
Feng S, Hou S, Cui Y, Tong Y, Yang H. Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J Ind Microbiol Biotechnol 2019; 47:21-33. [PMID: 31758413 DOI: 10.1007/s10295-019-02247-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/05/2019] [Indexed: 01/06/2023]
Abstract
Bioleaching, an alternative environmental smelting technology, typically uses high concentrations of heavy metal ions, especially in the subsequent phase, due to metal ion accumulation from the mineral. In this study, we analyzed the overall response of the bioleaching microorganism Acidithiobacillus caldus to copper stress through physiological and transcriptomic analyses. Scanning electron microscopy results showed higher extracellular polymeric substances secretion and cell aggregation under copper stress. Intracellular levels of glutamic acid, glycine and cysteine increased, favoring the synthesis of glutathione for maintenance of the oxidation-reduction state. GSH, during copper stress conditions, the activity of GSH-PX and CAT increased, resulting in reduced oxidative damage while maintaining stable intracellular pH. Higher unsaturated and cyclopropane fatty acid levels resulted in increased membrane fluidity and compactness and decreased ATP levels to support the energy requirements for stress resistance. Initially, H+-ATPase activity increased to provide energy for proton output and decreased later at higher copper ion stress. From transcriptome analysis, 140 genes were differentially expressed under low copper stress (1 g/L), while 250 genes exhibited altered transcriptional levels at higher copper stress (3 g/L). These differentially expressed genes were involved primarily in metabolic pathways such as energy metabolism, two-component systems, amino acid metabolism, and signal transduction. The Sox family cluster gene cluster involved in the conversion of thiosulfate to sulfate was upregulated in the sulfur metabolism pathway. In the oxidative phosphorylation pathway, genes participating in the synthesis of NADH oxidoreductase and cytochrome c oxidase, nuoL, cyoABD (cyoA, cyoB and cyoD) and cydAB (cydA and cydB), were downregulated. The TCS element ompR, closely associated with the osmotic pressure, exhibited active response, while Cu2+ efflux system gene cusRS was upregulated. In the amino acid metabolism, the glnA involved in nitrogen fixation was upregulated and promoted the synthesis of glutamine synthetase for reducing excessive oxidative stress. This study provides new insights into the mechanism underlying A. caldus response to heavy-metal ion stress under harsh bioleaching conditions.
Collapse
Affiliation(s)
- Shoushuai Feng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Shaoxiang Hou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yaquan Cui
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| | - Hailin Yang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Wuxi, People's Republic of China. .,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
5
|
Grote J, Krysciak D, Petersen K, Güllert S, Schmeisser C, Förstner KU, Krishnan HB, Schwalbe H, Kubatova N, Streit WR. The Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234. Front Microbiol 2016; 7:1858. [PMID: 27917168 PMCID: PMC5114275 DOI: 10.3389/fmicb.2016.01858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/04/2016] [Indexed: 01/24/2023] Open
Abstract
Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacteria. Here, we provide evidence that in the broad host range strain Sinorhizobium fredii NGR234 the complete lack of quorum sensing molecules results in an elevated copy number of its symbiotic plasmid (pNGR234a). This in turn triggers the expression of symbiotic genes and the production of Nod factors in the absence of plant signals. Therefore, increasing the copy number of specific plasmids could be a widespread mechanism of specialized bacterial populations to bridge gaps in signaling cascades.
Collapse
Affiliation(s)
- Jessica Grote
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Dagmar Krysciak
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Katrin Petersen
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Simon Güllert
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Christel Schmeisser
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg Würzburg, Germany
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Missouri Columbia, MO, USA
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Nina Kubatova
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance Johann Wolfgang Goethe-University Frankfurt, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| |
Collapse
|
6
|
Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T, Sato S, Okazaki S. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele. Appl Environ Microbiol 2015; 81:6710-7. [PMID: 26187957 PMCID: PMC4561682 DOI: 10.1128/aem.01942-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.
Collapse
Affiliation(s)
- Omar M Faruque
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiharu Fujii
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
7
|
Guo HJ, Wang ET, Zhang XX, Li QQ, Zhang YM, Tian CF, Chen WX. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max. Appl Environ Microbiol 2014; 80:1245-55. [PMID: 24317084 PMCID: PMC3911071 DOI: 10.1128/aem.03037-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/30/2013] [Indexed: 01/09/2023] Open
Abstract
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.
Collapse
Affiliation(s)
- Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico D.F., Mexico
| | - Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Qin Qin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M, Lloret J, Mittard-Runte V, Rückert C, Ruiz-Sainz JE, Vinardell JM, Weidner S. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J Biotechnol 2011; 155:11-9. [PMID: 21458507 DOI: 10.1016/j.jbiotec.2011.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Glycine max (soybean) plants can be nodulated by fast-growing rhizobial strains of the genus Sinorhizobium as well as by slow-growing strains clustered in the genus Bradyrhizobium. Fast-growing rhizobia strains with different soybean cultivar specificities have been isolated from Chinese soils and from other geographical regions. Most of these strains have been clustered into the species Sinorhizobium fredii. The S. fredii strain HH103 was isolated from soils of Hubei province, Central China and was first described in 1985. This strain is capable to nodulate American and Asiatic soybean cultivars and many other different legumes and is so far the best studied fast-growing soybean-nodulating strain. Additionally to the chromosome S. fredii HH103 carries five indigenous plasmids. The largest plasmid (pSfrHH103e) harbours genes for the production of diverse surface polysaccharides, such as exopolysaccharides (EPS), lipopolysaccharides (LPS), and capsular polysaccharides (KPS). The second largest plasmid (pSfrHH103d) is a typical symbiotic plasmid (pSym), carrying nodulation and nitrogen fixation genes. The present mini review focuses on symbiotic properties of S. fredii HH103, in particular on nodulation and surface polysaccharides aspects. The model strain S. fredii HH103 was chosen for genomic sequencing, which is currently in progress. First analyses of the draft genome sequence revealed an extensive synteny between the chromosomes of S. fredii HH103 and Rhizobium sp. NGR234.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|