1
|
Kandris K, Pantazidou M, Mamais D. Model-based evidence for the relevance of microbial community variability to the efficiency of the anaerobic reductive dechlorination of TCE. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103834. [PMID: 34044306 DOI: 10.1016/j.jconhyd.2021.103834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The composition of mixed dechlorinating communities varies considerably in field and laboratory conditions. Dechlorinators thrive alongside with distinctive populations that help or hinder dechlorination. The variability of the composition of dechlorinating communities inevitably precludes a firm consensus regarding the optimal strategies for biostimulation. This lack of consensus motivated a model-based approach for the investigation of how the variability of the composition of a microbial community impacts the electron donor supply strategies for accelerating chloroethene removal. To this end, a kinetic model accounting for dechlorination in conjunction with cooperative and competing processes was developed. Model parameters were estimated using a multi-experiment, multi-start algorithm and data from research previously performed with two generations of a methane-producing, Dehalococcoides mccartyi-dominated consortium. The two generations of the consortium functioned comparably under maintenance conditions but performed divergently under high electron donor surpluses. The multi-experiment, multi-start algorithm overcame the hurdles of poor parameter identifiability and offered a probable cause for the different behaviors exhibited by each of the two generations of the chloroethene-degrading consortium: modest differences in the make-up of non-dechlorinators, which were minority populations, significantly influenced the fate of the offered electron donor.
Collapse
Affiliation(s)
- Kyriakos Kandris
- Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece.
| | - Marina Pantazidou
- Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece.
| | - Daniel Mamais
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Matturro B, Majone M, Aulenta F, Rossetti S. Correlations between maximum reductive dechlorination rates and specific biomass parameters in Dehalococcoides mccartyi consortia enriched on chloroethenes PCE, TCE and cis-1,2-DCE. FEMS Microbiol Ecol 2021; 97:6253249. [PMID: 33899920 DOI: 10.1093/femsec/fiab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
One of the challenges to implementing the modeling of the biological reductive dechlorination (RD) process is the evaluation of biological parameters that represent the abundance/activity levels of the microorganisms involved in the biodegradation of chloroethenes. Here we report a combined analysis of kinetic and specific biomass parameters conducted on three dechlorinating consortia enriched on PCE, TCE and cis-1,2-DCE. In these consortia, Dehalococcoides mccartyi (Dhc) represented ≥70% of the bacterial population identified via 16S rRNA gene amplicon sequencing. Quantitative biomolecular methods were used to generate specific biomass parameters targeting either the Dhc population (16S rRNA genes or cells) or specific genes encoding RD process-involved reductive dehalogenases. The correlation factor between the abundance of active Dhc cells or tceA gene copies and maximum RD rates allowed to predict an increment of 7E+09 of active Dhc cells or 5E+09 tceA gene copies/L under controlled conditions. Diversely, the utilization of gene transcripts as biomass parameters for RD modeling did not provide reliable correlations with kinetic performances. This study provides valuable insights for further modeling of the RD process through the utilization of specific biomass parameters.
Collapse
Affiliation(s)
- B Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29.300, Monterotondo (RM) 00015, Italy
| | - M Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - F Aulenta
- Water Research Institute, IRSA-CNR, Via Salaria km 29.300, Monterotondo (RM) 00015, Italy
| | - S Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29.300, Monterotondo (RM) 00015, Italy
| |
Collapse
|
3
|
Ghezzi D, Filippini M, Cappelletti M, Firrincieli A, Zannoni D, Gargini A, Fedi S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23017-23035. [PMID: 33438126 DOI: 10.1007/s11356-020-12236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Filippini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Gargini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
4
|
Li J, Hu A, Bai S, Yang X, Sun Q, Liao X, Yu CP. Characterization and Performance of Lactate-Feeding Consortia for Reductive Dechlorination of Trichloroethene. Microorganisms 2021; 9:microorganisms9040751. [PMID: 33918519 PMCID: PMC8065584 DOI: 10.3390/microorganisms9040751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the underlying mechanism that drives the microbial community mediated by substrates is crucial to enhance the biostimulation in trichloroethene (TCE)-contaminated sites. Here, we investigated the performance of stable TCE-dechlorinating consortia by monitoring the variations in TCE-related metabolites and explored their underlying assembly mechanisms using 16S rDNA amplicon sequencing and bioinformatics analyses. The monitoring results indicated that three stable TCE-dechlorinating consortia were successfully enriched by lactate-containing anaerobic media. The statistical analysis results demonstrated that the microbial communities of the enrichment cultures changed along with time and were distinguished by their sample sources. The deterministic and stochastic processes were simultaneously responsible for shaping the TCE-dechlorinating community assembly. The indicator patterns shifted with the exhaustion of the carbon source and the pollutants, and the tceA-carrying Dehalococcoides, as an indicator for the final stage samples, responded positively to TCE removal during the incubation period. Pseudomonas, Desulforhabdus, Desulfovibrio and Methanofollis were identified as keystone populations in the TCE-dechlorinating process by co-occurrence network analysis. The results of this study indicate that lactate can be an effective substrate for stimulated bioremediation of TCE-contaminated sites, and the reduction of the stochastic forces or enhancement of the deterministic interventions may promote more effective biostimulation.
Collapse
Affiliation(s)
- Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Shijie Bai
- Institute of Deep Sea Science and Engineering, Chinese Academic of Sciences, Sanya 572000, China;
| | - Xiaoyong Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Xu Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (J.L.); (A.H.); (X.Y.); (Q.S.); (X.L.)
- Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei 10617, Taiwan
- Correspondence:
| |
Collapse
|
5
|
St. James AR, Richardson RE. Ecogenomics reveals community interactions in a long-term methanogenic bioreactor and a rapid switch to sulfate-reducing conditions. FEMS Microbiol Ecol 2020; 96:5809959. [DOI: 10.1093/femsec/fiaa050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT
The anaerobic digestion of wastes is globally important in the production of methane (CH4) as a biofuel. When sulfate is present, sulfate-reducing bacteria (SRB) are stimulated, competing with methanogens for common substrates, which decreases CH4 production and results in the formation of corrosive, odorous hydrogen sulfide gas (H2S). Here, we show that a population of SRB within a methanogenic bioreactor fed only butyrate for years immediately (within hours) responded to sulfate availability and shifted the microbial community dynamics within the bioreactor. By mapping shotgun metatranscriptomes to metagenome-assembled genomes, we shed light on the transcriptomic responses of key community members in response to increased sulfate provision. We link these short-term transcriptional responses to long-term niche partitioning using comparative metagenomic analyses. Our results suggest that sulfate provision supports a syntrophic butyrate oxidation community that disfavors poly-β-hydroxyalkanoate storage and that hydrogenotrophic SRB populations effectively exclude obligately hydrogenotrophic, but not aceticlastic, methanogens when sulfate is readily available. These findings elucidate key ecological dynamics between SRB, methanogens and syntrophic butyrate-oxidizing bacteria, which can be applied to a variety of engineered and natural systems.
Collapse
Affiliation(s)
- Andrew R St. James
- School of Civil and Environmental Engineering, Cornell University, 527 College Ave, Hollister Hall, Ithaca, NY, USA 14853
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, 527 College Ave, Hollister Hall, Ithaca, NY, USA 14853
| |
Collapse
|
6
|
Preparation and characterization of site-specific dechlorinating microbial inocula capable of complete dechlorination enriched in anaerobic microcosms amended with clay mineral. World J Microbiol Biotechnol 2020; 36:29. [PMID: 32016527 PMCID: PMC6997268 DOI: 10.1007/s11274-020-2806-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 11/21/2022]
Abstract
Abstract Short-chain halogenated aliphatic hydrocarbons (e.g. perchloroethene, trichloroethene) are among the most toxic environmental pollutants. Perchloroethene and trichloroethene can be dechlorinated to non-toxic ethene through reductive dechlorination by Dehalococcoides sp. Bioaugmentation, applying cultures containing organohalide-respiring microorganisms, is a possible technique to remediate sites contaminated with chlorinated ethenes. Application of site specific inocula is an efficient alternative solution. Our aim was to develop site specific dechlorinating microbial inocula by enriching microbial consortia from groundwater contaminated with trichloroethene using microcosm experiments containing clay mineral as solid phase. Our main goal was to develop fast and reliable method to produce large amount (100 L) of bioactive agent with anaerobic fermentation technology. Polyphasic approach has been applied to monitor the effectiveness of dechlorination during the transfer process from bench-scale (500 mL) to industrial-scale (100 L). Gas chromatography measurement and T-RFLP (Terminal Restriction Fragment Length Polymorphism) revealed that the serial subculture of the enrichments shortened the time-course of the complete dechlorination of trichloroethene to ethene and altered the composition of bacterial communities. Complete dechlorination was observed in enrichments with significant abundance of Dehalococcoides sp. cultivated at 8 °C. Consortia incubated in fermenters at 18 °C accelerated the conversion of TCE to ethene by 7–14 days. Members of the enrichments belong to the phyla Bacteroidetes, Chloroflexi, Proteobacteria and Firmicutes. According to the operational taxonomic units, main differences between the composition of the enrichment incubated at 8 °C and 18 °C occurred with relative abundance of acetogenic and fermentative species. In addition to the temperature, the site-specific origin of the microbial communities and the solid phase applied during the fermentation technique contributed to the development of a unique microbial composition. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11274-020-2806-7) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Mao X, Stenuit B, Tremblay J, Yu K, Tringe SG, Alvarez-Cohen L. Structural dynamics and transcriptomic analysis of Dehalococcoides mccartyi within a TCE-Dechlorinating community in a completely mixed flow reactor. WATER RESEARCH 2019; 158:146-156. [PMID: 31035191 PMCID: PMC7053656 DOI: 10.1016/j.watres.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
A trichloroethene (TCE)-dechlorinating community (CANAS) maintained in a completely mixed flow reactor was established from a semi-batch enrichment culture (ANAS) and was monitored for 400 days at a low solids retention time (SRT) under electron acceptor limitation. Around 85% of TCE supplied to CANAS (0.13 mmol d-1) was converted to ethene at a rate of 0.1 mmol d-1, with detection of low production rates of vinyl chloride (6.8 × 10-3 mmol d-1) and cis-dichloroethene (2.3 × 10-3 mmol d-1). Two distinct Dehalococcoides mccartyi strains (ANAS1 and ANAS2) were stably maintained at 6.2 ± 2.8 × 108 cells mL-1 and 5.8 ± 1.2 × 108 cells mL-1, respectively. Electron balance analysis showed 107% electron recovery, in which 6.1% were involved in dechlorination. 16 S rRNA amplicon sequencing revealed a structural regime shift between ANAS and CANAS while maintaining robust TCE dechlorination due to similar relative abundances of D. mccartyi and functional redundancy among each functional guild supporting D. mccartyi activity. D. mccartyi transcriptomic analysis identified the genes encoding for ribosomal RNA and the reductive dehalogenases tceA and vcrA as the most expressed genes in CANAS, while hup and vhu were the most critical hydrogenases utilized by D. mccartyi in the community.
Collapse
Affiliation(s)
- Xinwei Mao
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | - Benoit Stenuit
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | | | - Ke Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA
| | - Susannah G Tringe
- DOE Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720-1710, USA; Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
The impact of reducing dietary crude protein and increasing total dietary fiber on hindgut fermentation, the methanogen community and gas emission in growing pigs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
El-Sayed WS. Characterization of a Highly Enriched Microbial Consortium Reductively Dechlorinating 2,3-Dichlorophenol and 2,4,6-Trichlorophenol and the Corresponding cprA Genes from River Sediment. Pol J Microbiol 2018; 65:341-352. [PMID: 29334051 DOI: 10.5604/17331331.1215613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anaerobic reductive dechlorination of 2,3-dichlorophenol (2,3DCP) and 2,4,6-trichlorophenol (2,4,6TCP) was investigated in microcosms from River Nile sediment. A stable sediment-free anaerobic microbial consortium reductively dechlorinating 2,3DCP and 2,4,6TCP was established. Defined sediment-free cultures showing stable dechlorination were restricted to ortho chlorine when enriched with hydrogen as the electron donor, acetate as the carbon source, and either 2,3-DCP or 2,4,6-TCP as electron acceptors. When acetate, formate, or pyruvate were used as electron donors, dechlorination activity was lost. Only lactate can replace dihydrogen as an electron donor. However, the dechlorination potential was decreased after successive transfers. To reveal chlororespiring species, the microbial community structure of chlorophenol-reductive dechlorinating enrichment cultures was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Eight dominant bacteria were detected in the dechlorinating microcosms including members of the genera Citrobacter, Geobacter, Pseudomonas, Desulfitobacterium, Desulfovibrio and Clostridium. Highly enriched dechlorinating cultures were dominated by four bacterial species belonging to the genera Pseudomonas, Desulfitobacterium, and Clostridium. Desulfitobacterium represented the major fraction in DGGE profiles indicating its importance in dechlorination activity, which was further confirmed by its absence resulting in complete loss of dechlorination. Reductive dechlorination was confirmed by the stoichiometric dechlorination of 2,3DCP and 2,4,6TCP to metabolites with less chloride groups and by the detection of chlorophenol RD cprA gene fragments in dechlorinating cultures. PCR amplified cprA gene fragments were cloned and sequenced and found to cluster with the cprA/pceA type genes of Dehalobacter restrictus.
Collapse
Affiliation(s)
- Wael S El-Sayed
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, KSA; Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Atashgahi S, Häggblom MM, Smidt H. Organohalide respiration in pristine environments: implications for the natural halogen cycle. Environ Microbiol 2017; 20:934-948. [PMID: 29215190 DOI: 10.1111/1462-2920.14016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022]
Abstract
Halogenated organic compounds, also termed organohalogens, were initially considered to be of almost exclusively anthropogenic origin. However, over 5000 naturally synthesized organohalogens are known today. This has also fuelled the hypothesis that the natural and ancient origin of organohalogens could have primed development of metabolic machineries for their degradation, especially in microorganisms. Among these, a special group of anaerobic microorganisms was discovered that could conserve energy by reducing organohalogens as terminal electron acceptor in a process termed organohalide respiration. Originally discovered in a quest for biodegradation of anthropogenic organohalogens, these organohalide-respiring bacteria (OHRB) were soon found to reside in pristine environments, such as the deep subseafloor and Arctic tundra soil with limited/no connections to anthropogenic activities. As such, accumulating evidence suggests an important role of OHRB in local natural halogen cycles, presumably taking advantage of natural organohalogens. In this minireview, we integrate current knowledge regarding the natural origin and occurrence of industrially important organohalogens and the evolution and spread of OHRB, and describe potential implications for natural halogen and carbon cycles.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
11
|
Yang Y, Cápiro NL, Yan J, Marcet TF, Pennell KD, Löffler FE. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiol Ecol 2017; 93:4411799. [DOI: 10.1093/femsec/fix130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/05/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, 325 John D. Tickle Bldg, 851 Neyland Drive, Knoxville, TN 37996, USA
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Bldg 1520, Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Natalie L. Cápiro
- Department of Civil and Environmental Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Bldg 1520, Bethel Valley Road, Oak Ridge, TN 37831, USA
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Department of Microbiology, University of Tennessee, M409 Walters Life Science Bldg, Knoxville, TN 37996, USA
| | - Tyler F. Marcet
- Department of Civil and Environmental Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Kurt D. Pennell
- Department of Civil and Environmental Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Frank E. Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, 325 John D. Tickle Bldg, 851 Neyland Drive, Knoxville, TN 37996, USA
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Bldg 1520, Bethel Valley Road, Oak Ridge, TN 37831, USA
- Department of Microbiology, University of Tennessee, M409 Walters Life Science Bldg, Knoxville, TN 37996, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Dr., Knoxville, TN 37996, USA
| |
Collapse
|
12
|
Delgado AG, Fajardo-Williams D, Bondank E, Esquivel-Elizondo S, Krajmalnik-Brown R. Coupling Bioflocculation of Dehalococcoides mccartyi to High-Rate Reductive Dehalogenation of Chlorinated Ethenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11297-11307. [PMID: 28914537 DOI: 10.1021/acs.est.7b03097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Continuous bioreactors operated at low hydraulic retention times have rarely been explored for reductive dehalogenation of chlorinated ethenes. The inability to consistently develop such bioreactors affects the way growth approaches for Dehalococcoides mccartyi bioaugmentation cultures are envisioned. It also affects interpretation of results from in situ continuous treatment processes. We report bioreactor performance and dehalogenation kinetics of a D. mccartyi-containing consortium in an upflow bioreactor. When fed synthetic groundwater at 11-3.6 h HRT, the upflow bioreactor removed >99.7% of the influent trichloroethene (1.5-2.8 mM) and produced ethene as the main product. A trichloroethene removal rate of 98.51 ± 0.05 me- equiv L-1 d-1 was achieved at 3.6 h HRT. D. mccartyi cell densities were 1013 and 1012 16S rRNA gene copies L-1 in the bioflocs and planktonic culture, respectively. When challenged with a feed of natural groundwater containing various competing electron acceptors and 0.3-0.4 mM trichloroethene, trichloroethene removal was sustained at >99.6%. Electron micrographs revealed that D. mccartyi were abundant within the bioflocs, not only in multispecies structures, but also as self-aggregated microcolonies. This study provides fundamental evidence toward the feasibility of upflow bioreactors containing D. mccartyi as high-density culture production tools or as a high-rate, real-time remediation biotechnology.
Collapse
Affiliation(s)
- Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Devyn Fajardo-Williams
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Emily Bondank
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , Tempe, Arizona 85287-5701, United States
| | - Sofia Esquivel-Elizondo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University , Tempe, Arizona 85287-5701, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287-3005, United States
| |
Collapse
|
13
|
Bouhajja E, Agathos SN, George IF. Metagenomics: Probing pollutant fate in natural and engineered ecosystems. Biotechnol Adv 2016; 34:1413-1426. [PMID: 27825829 DOI: 10.1016/j.biotechadv.2016.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/01/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022]
Abstract
Polluted environments are a reservoir of microbial species able to degrade or to convert pollutants to harmless compounds. The proper management of microbial resources requires a comprehensive characterization of their genetic pool to assess the fate of contaminants and increase the efficiency of bioremediation processes. Metagenomics offers appropriate tools to describe microbial communities in their whole complexity without lab-based cultivation of individual strains. After a decade of use of metagenomics to study microbiomes, the scientific community has made significant progress in this field. In this review, we survey the main steps of metagenomics applied to environments contaminated with organic compounds or heavy metals. We emphasize technical solutions proposed to overcome encountered obstacles. We then compare two metagenomic approaches, i.e. library-based targeted metagenomics and direct sequencing of metagenomes. In the former, environmental DNA is cloned inside a host, and then clones of interest are selected based on (i) their expression of biodegradative functions or (ii) sequence homology with probes and primers designed from relevant, already known sequences. The highest score for the discovery of novel genes and degradation pathways has been achieved so far by functional screening of large clone libraries. On the other hand, direct sequencing of metagenomes without a cloning step has been more often applied to polluted environments for characterization of the taxonomic and functional composition of microbial communities and their dynamics. In this case, the analysis has focused on 16S rRNA genes and marker genes of biodegradation. Advances in next generation sequencing and in bioinformatic analysis of sequencing data have opened up new opportunities for assessing the potential of biodegradation by microbes, but annotation of collected genes is still hampered by a limited number of available reference sequences in databases. Although metagenomics is still facing technical and computational challenges, our review of the recent literature highlights its value as an aid to efficiently monitor the clean-up of contaminated environments and develop successful strategies to mitigate the impact of pollutants on ecosystems.
Collapse
Affiliation(s)
- Emna Bouhajja
- Laboratoire de Génie Biologique, Earth and Life Institute, Université Catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348 Louvain-la-Neuve, Belgium
| | - Spiros N Agathos
- Laboratoire de Génie Biologique, Earth and Life Institute, Université Catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348 Louvain-la-Neuve, Belgium; School of Life Sciences and Biotechnology, Yachay Tech University, 100119 San Miguel de Urcuquí, Ecuador
| | - Isabelle F George
- Université Libre de Bruxelles, Laboratoire d'Ecologie des Systèmes Aquatiques, Campus de la Plaine CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
14
|
Atashgahi S, Lu Y, Zheng Y, Saccenti E, Suarez-Diez M, Ramiro-Garcia J, Eisenmann H, Elsner M, J.M. Stams A, Springael D, Dejonghe W, Smidt H. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Environ Microbiol 2016; 19:968-981. [DOI: 10.1111/1462-2920.13531] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Siavash Atashgahi
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology; Boeretang 200, 2400 Mol Belgium
- Laboratory of Microbiology; Wageningen University & Research; Wageningen The Netherlands
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Heverlee B-3001 Belgium
| | - Yue Lu
- Laboratory of Microbiology; Wageningen University & Research; Wageningen The Netherlands
| | - Ying Zheng
- Laboratory of Microbiology; Wageningen University & Research; Wageningen The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research; Wageningen The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research; Wageningen The Netherlands
| | - Javier Ramiro-Garcia
- Laboratory of Microbiology; Wageningen University & Research; Wageningen The Netherlands
- Laboratory of Systems and Synthetic Biology; Wageningen University & Research; Wageningen The Netherlands
| | | | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health; Ingolstädter Landstrasse 1 Neuherberg D-85764 Germany
| | - Alfons J.M. Stams
- Laboratory of Microbiology; Wageningen University & Research; Wageningen The Netherlands
- Centre of Biological Engineering; University of Minho; Braga Portugal
| | - Dirk Springael
- Division of Soil and Water Management; KU Leuven; Kasteelpark Arenberg 20 Heverlee B-3001 Belgium
| | - Winnie Dejonghe
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology; Boeretang 200, 2400 Mol Belgium
| | - Hauke Smidt
- Laboratory of Microbiology; Wageningen University & Research; Wageningen The Netherlands
| |
Collapse
|
15
|
Wang SY, Chen SC, Lin YC, Kuo YC, Chen JY, Kao CM. Acidification and sulfide formation control during reductive dechlorination of 1,2-dichloroethane in groundwater: Effectiveness and mechanistic study. CHEMOSPHERE 2016; 160:216-229. [PMID: 27376861 DOI: 10.1016/j.chemosphere.2016.06.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/21/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
To enhance the reductive dechlorination of 1,2-dichloroethane (DCA) in groundwater, substrate injection may be required. However, substrate biodegradation causes groundwater acidification and sulfide production, which inhibits the bacteria responsible for DCA dechlorination and results in an odor problem. In the microcosm study, the effectiveness of the addition of ferrous sulfate (FS), desulfurization slag (DS), and nanoscale zero-valent iron (nZVI) on acidification and sulfide control was studied during reductive dechlorination of DCA, and the emulsified substrate (ES) was used as the substrate. Up to 94% of the sulfide was removed with FS and DS addition (0.25 wt%) (initial DCA concentration = 13.5 mg/L). FS and DS amendments resulted in the formation of a metal sulfide, which reduced the hydrogen sulfide concentration as well as the subsequent odor problem. Approximately 96% of the DCA was degraded under reductive dechlorination with nZVI or DS addition using ES as the substrate. In microcosms with nZVI or DS addition, the sulfide concentration was reduced to less than 15 μg/L. Acidification can be controlled via hydroxide ions production after nZVI oxidation and reaction of free CaO (released from DS) with water, which enhanced DCA dechlorination. The quantitative polymerase chain reaction results confirmed that the microcosms with nZVI added had the highest Dehalococcoides population (up to 2.5 × 10(8) gene copies/g soil) due to effective acidification control. The α-elimination mechanism was the main abiotic process, and reductive dechlorination dominated by Dehalococcides was the biotic mechanism that resulted in DCA removal. More than 22 bacterial species were detected, and dechlorinating bacteria existed in soils under alkaline and acidic conditions.
Collapse
Affiliation(s)
- S Y Wang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Chung-Li, Taiwan
| | - Y C Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Y C Kuo
- Formosa Petrochemical Co., Kaohsiung, Taiwan
| | - J Y Chen
- Formosa Petrochemical Co., Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
16
|
Quartieri A, Simone M, Gozzoli C, Popovic M, D'Auria G, Amaretti A, Raimondi S, Rossi M. Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe 2016; 38:130-137. [DOI: 10.1016/j.anaerobe.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023]
|
17
|
Design and application of a synthetic DNA standard for real-time PCR analysis of microbial communities in a biogas digester. Appl Microbiol Biotechnol 2015; 99:6855-63. [DOI: 10.1007/s00253-015-6721-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/19/2015] [Accepted: 05/23/2015] [Indexed: 11/25/2022]
|
18
|
Sutton NB, Atashgahi S, van der Wal J, Wijn G, Grotenhuis T, Smidt H, Rijnaarts HHM. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents. GROUND WATER 2015; 53:261-270. [PMID: 24898385 DOI: 10.1111/gwat.12209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR) to monitor the abundance of OHRB (Dehalococcoides mccartyi, Dehalobacter, Geobacter, and Desulfitobacterium) and reductive dehalogenase genes (rdh; tceA, vcrA, and bvcA) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene (PCE) and trichloroethene (TCE) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO. Groundwater acidification (pH<3) and increase in the oxidation reduction potential (>500 mV) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO. After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation (NA) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.
Collapse
Affiliation(s)
- Nora B Sutton
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Mao X, Stenuit B, Polasko A, Alvarez-Cohen L. Efficient metabolic exchange and electron transfer within a syntrophic trichloroethene-degrading coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei. Appl Environ Microbiol 2015; 81:2015-24. [PMID: 25576615 PMCID: PMC4345365 DOI: 10.1128/aem.03464-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/02/2015] [Indexed: 01/07/2023] Open
Abstract
Dehalococcoides mccartyi 195 (strain 195) and Syntrophomonas wolfei were grown in a sustainable syntrophic coculture using butyrate as an electron donor and carbon source and trichloroethene (TCE) as an electron acceptor. The maximum dechlorination rate (9.9 ± 0.1 μmol day(-1)) and cell yield [(1.1 ± 0.3) × 10(8) cells μmol(-1) Cl(-)] of strain 195 maintained in coculture were, respectively, 2.6 and 1.6 times higher than those measured in the pure culture. The strain 195 cell concentration was about 16 times higher than that of S. wolfei in the coculture. Aqueous H2 concentrations ranged from 24 to 180 nM during dechlorination and increased to 350 ± 20 nM when TCE was depleted, resulting in cessation of butyrate fermentation by S. wolfei with a theoretical Gibbs free energy of -13.7 ± 0.2 kJ mol(-1). Carbon monoxide in the coculture was around 0.06 μmol per bottle, which was lower than that observed for strain 195 in isolation. The minimum H2 threshold value for TCE dechlorination by strain 195 in the coculture was 0.6 ± 0.1 nM. Cell aggregates during syntrophic growth were observed by scanning electron microscopy. The interspecies distances to achieve H2 fluxes required to support the measured dechlorination rates were predicted using Fick's law and demonstrated the need for aggregation. Filamentous appendages and extracellular polymeric substance (EPS)-like structures were present in the intercellular spaces. The transcriptome of strain 195 during exponential growth in the coculture indicated increased ATP-binding cassette transporter activities compared to the pure culture, while the membrane-bound energy metabolism related genes were expressed at stable levels.
Collapse
Affiliation(s)
- Xinwei Mao
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Benoit Stenuit
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Alexandra Polasko
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California, USA Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
20
|
Relating mRNA and protein biomarker levels in a Dehalococcoides and Methanospirillum-containing community. Appl Microbiol Biotechnol 2014; 99:2313-27. [DOI: 10.1007/s00253-014-6220-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
21
|
Meta-analyses of Dehalococcoides mccartyi strain 195 transcriptomic profiles identify a respiration rate-related gene expression transition point and interoperon recruitment of a key oxidoreductase subunit. Appl Environ Microbiol 2014; 80:6062-72. [PMID: 25063656 DOI: 10.1128/aem.02130-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6±0.6 μM Cl-/h)- and fast (22.9±9.6 μM Cl-/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n=53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112).
Collapse
|
22
|
Danko AS, Fontenete SJ, de Aquino Leite D, Leitão PO, Almeida C, Schaefer CE, Vainberg S, Steffan RJ, Azevedo NF. Detection of Dehalococcoides spp. by peptide nucleic acid fluorescent in situ hybridization. J Mol Microbiol Biotechnol 2014; 24:142-9. [PMID: 24970105 DOI: 10.1159/000362790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chlorinated solvents including tetrachloroethene (perchloroethene and trichloroethene), are widely used industrial solvents. Improper use and disposal of these chemicals has led to a widespread contamination. Anaerobic treatment technologies that utilize Dehalococcoides spp. can be an effective tool to remediate these contaminated sites. Therefore, the aim of this study was to develop, optimize and validate peptide nucleic acid (PNA) probes for the detection of Dehalococcoides spp. in both pure and mixed cultures. PNA probes were designed by adapting previously published DNA probes targeting the region of the point mutations described for discriminating between the Dehalococcoides spp. strain CBDB1 and strain 195 lineages. Different fixation, hybridization and washing procedures were tested. The results indicated that the PNA probes hybridized specifically and with a high sensitivity to their corresponding lineages, and that the PNA probes developed during this work can be used in a duplex assay to distinguish between strain CBDB1 and strain 195 lineages, even in complex mixed cultures. This work demonstrates the effectiveness of using PNA fluorescence in situ hybridization to distinguish between two metabolically and genetically distinct Dehalococcoides strains, and they can have strong implications in the monitoring and differentiation of Dehalococcoides populations in laboratory cultures and at contaminated sites.
Collapse
Affiliation(s)
- Anthony S Danko
- Centro de Investigação em Geo-Ambiente e Recursos (CIGAR), Departamento de Engenharia de Minas, Faculdade de Engenharia, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mukherjee K, Bowman KS, Rainey FA, Siddaramappa S, Challacombe JF, Moe WM. Dehalogenimonas lykanthroporepellensBL-DC-9Tsimultaneously transcribes manyrdhAgenes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors. FEMS Microbiol Lett 2014; 354:111-8. [DOI: 10.1111/1574-6968.12434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kalpataru Mukherjee
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
| | - Kimberly S. Bowman
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| | - Fred A. Rainey
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA USA
- Department of Biological Sciences; University of Alaska Anchorage; Anchorage AK USA
| | - Shivakumara Siddaramappa
- Bioscience Division; Los Alamos National Laboratory; Los Alamos NM USA
- Institute of Bioinformatics and Applied Biotechnology; Bengaluru India
| | | | - William M. Moe
- Department of Civil and Environmental Engineering; Louisiana State University; Baton Rouge LA USA
| |
Collapse
|
24
|
Matturro B, Tandoi V, Rossetti S. Different activity levels of Dehalococcoides mccartyi revealed by FISH and CARD-FISH under non-steady and pseudo-steady state conditions. N Biotechnol 2013; 30:756-62. [DOI: 10.1016/j.nbt.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 11/15/2022]
|
25
|
Men Y, Lee PKH, Harding KC, Alvarez-Cohen L. Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Appl Microbiol Biotechnol 2013; 97:6439-50. [PMID: 23640361 DOI: 10.1007/s00253-013-4896-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 11/27/2022]
Abstract
To investigate the important supportive microorganisms responsible for trichloroethene (TCE) bioremediation under specific environmental conditions and their relationship with Dehalococcoides (Dhc), four stable and robust enrichment cultures were generated using contaminated groundwater. Enrichments were maintained under four different conditions exploring two parameters: high and low TCE amendments (resulting in inhibited and uninhibited methanogenic activity, respectively) and with and without vitamin B₁₂ amendment. Lactate was supplied as the electron donor. All enrichments were capable of reductively dechlorinating TCE to vinyl chloride and ethene. The dechlorination rate and ethene generation were higher, and the proportion of electrons used for dechlorination increased when methanogenesis was inhibited. Biologically significant cobalamin biosynthesis was detected in the enrichments without B₁₂ amendment. Comparative genomics using a genus-wide microarray revealed a Dhc genome similar to that of strain 195 in all enrichments, a strain that lacks the major upstream corrin ring biosynthesis pathway. Seven other bacterial operational taxonomic units (OTUs) were detected using clone libraries. OTUs closest to Pelosinus, Dendrosporobacter, and Sporotalea (PDS) were most dominant. The Clostridium-like OTU was most affected by B₁₂ amendment and active methanogenesis. Principal component analysis revealed that active methanogenesis, rather than vitamin B₁₂ limitation, exerted a greater effect on the community structures even though methanogens did not seem to play an essential role in providing corrinoids to Dhc. In contrast, acetogenic bacteria that were abundant in the enrichments, such as PDS and Clostridium sp., may be potential corrinoid providers for Dhc.
Collapse
Affiliation(s)
- Yujie Men
- Department of Civil and Environmental Engineering, University of California, 207 O'Brien Hall, Berkeley, CA 94720-1710, USA
| | | | | | | |
Collapse
|
26
|
Heavner GLW, Rowe AR, Mansfeldt CB, Pan JK, Gossett JM, Richardson RE. Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3724-33. [PMID: 23363057 DOI: 10.1021/es303517s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bioremediation of chlorinated ethenes via anaerobic reductive dechlorination relies upon the activity of specific microbial populations--most notably Dehalococcoides (DHC) strains. In the lab and field Dehalococcoides grow most robustly in mixed communities which usually contain both fermenters and methanogens. Recently, researchers have been developing quantitative molecular biomarkers to aid in field site diagnostics and it is hoped that these biomarkers could aid in the modeling of anaerobic reductive dechlorination. A comprehensive biokinetic model of a community containing Dehalococcoides mccartyi (formerly D. ethenogenes) was updated to describe continuously fed reactors with specific biomass levels based on quantitative PCR (qPCR)-based population data (DNA and RNA). The model was calibrated and validated with subsets of chemical and molecular biological data from various continuous feed experiments (n = 24) with different loading rates of the electron acceptor (1.5 to 482 μeeq/L-h), types of electron acceptor (PCE, TCE, cis-DCE) and electron donor to electron acceptor ratios. The resulting model predicted the sum of dechlorination products vinyl chloride (VC) and ethene (ETH) well. However, VC alone was under-predicted and ETH was over predicted. Consequently, competitive inhibition among chlorinated ethenes was examined and then added to the model. Additionally, as 16S rRNA gene copy numbers did not provide accurate model fits in all cases, we examined whether an improved fit could be obtained if mRNA levels for key functional enzymes could be used to infer respiration rates. The resulting empirically derived mRNA "adjustment factors" were added to the model for both DHC and the main methanogen in the culture (a Methanosaeta species) to provide a more nuanced prediction of activity. Results of this study suggest that at higher feeding rates competitive inhibition is important and mRNA provides a more accurate indicator of a population's instantaneous activity than 16S rRNA gene copies alone as biomass estimates.
Collapse
Affiliation(s)
- Gretchen L W Heavner
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
27
|
Hug LA, Maphosa F, Leys D, Löffler FE, Smidt H, Edwards EA, Adrian L. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120322. [PMID: 23479752 DOI: 10.1098/rstb.2012.0322] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology.
Collapse
Affiliation(s)
- Laura A Hug
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
West KA, Lee PK, Johnson DR, Zinder SH, Alvarez-Cohen L. Global gene expression ofDehalococcoideswithin a robust dynamic TCE-dechlorinating community under conditions of periodic substrate supply. Biotechnol Bioeng 2013; 110:1333-41. [DOI: 10.1002/bit.24819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 01/02/2023]
|
29
|
Rowe AR, Mansfeldt CB, Heavner GL, Richardson RE. Methanospirillum respiratory mRNA biomarkers correlate with hydrogenotrophic methanogenesis rate during growth and competition for hydrogen in an organochlorine-respiring mixed culture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:372-381. [PMID: 23153046 DOI: 10.1021/es303061y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Molecular biomarkers hold promise for inferring rates of key metabolic activities in complex microbial systems. However, few studies have assessed biomarker levels for simultaneously occurring (and potentially competing) respirations. In this study, methanogenesis biomarkers for Methanospirillum hungatei were developed, tested, and compared to Dehalococcoides mccartyi biomarkers in a well-characterized mixed culture. Proteomic analyses of mixed culture samples (n = 4) confirmed expression of many M. hungatei methanogenesis enzymes. The mRNAs for two oxidoreductases detected were explored as quantitative biomarkers of hydrogenotrophic methanogenesis: a coenzyme F(420)-reducing hydrogenase (FrcA) and an iron sulfur protein (MvrD). As shown previously in D. mccartyi, M. hungatei transcript levels correlated linearly with measured (R = 0.97 for FrcA, R = 0.91 for MvrD; n = 7) or calculated respiration rate (R = 0.81 for FrcA, R = 0.62 for MvrD; n = 35) across two orders of magnitude on a log-log scale. The average abundance of MvrD transcripts was consistently two orders of magnitude lower than FrcA, regardless of experimental condition. In experiments where M. hungatei was competing for hydrogen with D. mccartyi, transcripts for the key respiratory hydrogenase HupL were generally less abundant per mL than FrcA and more abundant than MvrD. With no chlorinated electron acceptor added, HupL transcripts fell below both targets. These biomarkers hold promise for the prediction of in situ rates of respiration for these microbes, even when growing in mixed culture and utilizing a shared substrate which has important implications for both engineered and environmental systems. However, the differences in overall biomarker abundances suggest that the strength of any particular mRNA biomarker relies upon empirically established quantitative trends under a range of pertinent conditions.
Collapse
Affiliation(s)
- Annette R Rowe
- Field of Microbiology, Cornell University, Ithaca, New York, United States.
| | | | | | | |
Collapse
|
30
|
Sercu B, Jones ADG, Wu CH, Escobar MH, Serlin CL, Knapp TA, Andersen GL, Holden PA. The influence of in situ chemical oxidation on microbial community composition in groundwater contaminated with chlorinated solvents. MICROBIAL ECOLOGY 2013; 65:39-49. [PMID: 22864851 DOI: 10.1007/s00248-012-0092-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO(4)) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO(4) exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray-Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO(4) was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO(4) exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.
Collapse
Affiliation(s)
- Bram Sercu
- Earth Research Institute, University of California, Santa Barbara, CA 93106-4161, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chambon JC, Bjerg PL, Scheutz C, Baelum J, Jakobsen R, Binning PJ. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol Bioeng 2012; 110:1-23. [DOI: 10.1002/bit.24714] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 11/08/2022]
|
32
|
Rowe AR, Heavner GL, Mansfeldt CB, Werner JJ, Richardson RE. Relating chloroethene respiration rates in Dehalococcoides to protein and mRNA biomarkers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9388-9397. [PMID: 22812668 DOI: 10.1021/es300996c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Molecular biomarkers could provide critical insight into myriad in situ microbial activities. In this study we explore correlations of both mRNA and protein biomarkers with chloroethene respiration rate in Dehalococcoides. In a series of continuously fed dechlorinating mixed-culture microcosm experiments (n = 26), we varied respiratory substrates, substrate ratios and feeding rates. Transcript levels for most biomarkers were responsive down to 0.01× the culture's maximum respiration rate. The dehalogenase TceA and the Ni-Fe hydrogenase HupL transcripts were positively correlated (Pearson's r of 0.89 and 0.88, respectively) with respiration rates on log-log plots between 1.5 and 280 μeeq/L-hr for mRNA abundances of 10(7) to 10(10) transcripts/mL (0.07-230 transcripts/genome). These trends were independent of the types of chloroethene or electron donors fed. Other mRNA target levels plateaued or declined at respiration rates above 5 μeeq/L-hr. Using both relative and absolute protein quantification methods, we found that per-genome protein abundances of most targeted biomarkers did not statistically change over the experimental time frames. However, quantified enzyme levels allowed us to calculate in vivo enzyme-specific rate constants (k(cat)) for the dehalogenases PceA and TceA: 400 and 22 substrate molecules/enzyme-sec, respectively. Overall, these data support the promise of both mRNA and protein biomarkers for estimating process rates through either empirical (mRNA-based) or kinetic (protein-based) models, but they require follow-up studies in other cultures and at active remediation sites.
Collapse
Affiliation(s)
- Annette R Rowe
- Field of Microbiology, Cornell University, Ithaca New York 14853, United States
| | | | | | | | | |
Collapse
|
33
|
Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics 2012; 13:327. [PMID: 22823523 PMCID: PMC3475024 DOI: 10.1186/1471-2164-13-327] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/01/2012] [Indexed: 12/17/2022] Open
Abstract
Background The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions. A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth. Results The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the ∂-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth. Conclusions Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms’ identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures.
Collapse
Affiliation(s)
- Laura A Hug
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| | | | | | | | | |
Collapse
|
34
|
Ding C, He J. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments. Microb Biotechnol 2012; 5:347-67. [PMID: 22070763 PMCID: PMC3821678 DOI: 10.1111/j.1751-7915.2011.00313.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022] Open
Abstract
Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction-based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next-generation sequencing, provide unsurpassed detection ability, which has enabled large-scale comparative genomic and whole-genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic-acid-based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions.
Collapse
Affiliation(s)
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
35
|
Nesbø CL, Bradnan DM, Adebusuyi A, Dlutek M, Petrus AK, Foght J, Doolittle WF, Noll KM. Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. Extremophiles 2012; 16:387-93. [DOI: 10.1007/s00792-012-0437-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
|
36
|
Lee PKH, Warnecke F, Brodie EL, Macbeth TW, Conrad ME, Andersen GL, Alvarez-Cohen L. Phylogenetic microarray analysis of a microbial community performing reductive dechlorination at a TCE-contaminated site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1044-54. [PMID: 22091783 PMCID: PMC3461955 DOI: 10.1021/es203005k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A high-density phylogenetic microarray (PhyloChip) was applied to track bacterial and archaeal populations through different phases of remediation at Ft. Lewis, WA, a trichloroethene (TCE)-contaminated groundwater site. Biostimulation with whey, and bioaugmentation with a Dehalococcoides-containing enrichment culture were strategies implemented to enhance dechlorination. As a measure of species richness, over 1300 operational taxonomic units (OTUs) were detected in DNA from groundwater samples extracted during different stages of treatment and in the bioaugmentation culture. In order to determine active members within the community, 16S rRNA from samples were analyzed by microarray and ∼600 OTUs identified. A cDNA clone library of the expressed 16S rRNA corroborated the observed diversity and activity of some of the phyla. Principle component analysis of the treatment plot samples revealed that the microbial populations were constantly changing during the course of the study. Dynamic analysis of the archaeal population showed significant increases in methanogens at the later stages of treatment that correlated with increases in methane concentrations of over 2 orders of magnitude. Overall, the PhyloChip analyses in this study have provided insights into the microbial ecology and population dynamics at the TCE-contaminated field site useful for understanding the in situ reductive dechlorination processes.
Collapse
Affiliation(s)
- Patrick K. H. Lee
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - F. Warnecke
- Microbial Ecology Program, DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Eoin L. Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Mark E. Conrad
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gary L. Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- CORRESPONDENT: 726 Davis Hall, Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710. Phone: (510) 643-5969. Fax: (510) 642-7483.
| |
Collapse
|
37
|
Transcriptional analysis of a Dehalococcoides-containing microbial consortium reveals prophage activation. Appl Environ Microbiol 2011; 78:1178-86. [PMID: 22179237 DOI: 10.1128/aem.06416-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chlorinated solvents are among the most prevalent groundwater contaminants in the industrialized world. Biodegradation with Dehalococcoides-containing mixed cultures is an effective remediation technology. To elucidate transcribed genes in a Dehalococcoides-containing mixed culture, a shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination and during starvation (no chlorinated compounds) by a microbial enrichment culture called KB-1. In both treatment conditions, methanol was amended as an electron donor. Subsequently, spots were sequenced that contained the genes most differentially transcribed between the VC-degrading and methanol-only conditions, as well as spots with the highest intensities. Sequencing revealed that during VC degradation Dehalococcoides genes involved in transcription, translation, metabolic energy generation, and amino acid and lipid metabolism and transport were overrepresented in the transcripts compared to the average Dehalococcoides genome. KB-1 rdhA14 (vcrA) was the only reductive dehalogenase homologous (RDH) gene with higher transcript levels during VC degradation, while multiple RDH genes had higher transcript levels in the absence of VC. Numerous hypothetical genes from Dehalococcoides also had higher transcript levels in methanol-only treatments, indicating that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. In addition, microarray results prompted biological experiments confirming that electron acceptor limiting conditions activated a Dehalococcoides prophage. Transcripts from Spirochaetes, Chloroflexi, Geobacter, and methanogens demonstrate the importance of non-Dehalococcoides organisms to the culture, and sequencing of identified shotgun clones of interest provided information for follow-on targeted studies.
Collapse
|
38
|
Qiu M, Chen X, Deng D, Guo J, Sun G, Mai B, Xu M. Effects of electron donors on anaerobic microbial debromination of polybrominated diphenyl ethers (PBDEs). Biodegradation 2011; 23:351-61. [PMID: 21910024 DOI: 10.1007/s10532-011-9514-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants that have been highly accumulated in sediments. It is reported that microorganisms play an important role in the reductive debromination of PBDEs in anaerobic sediments. However, little is known about the effects of electron donors on the microbial community structure and their debromination capacity in PBDE transformation. In this study, alternate carbon substrates were used as electron donors to enrich the PBDE-debrominating microbial consortia to evaluate the effects of electron donors on PBDE microbial debromination. Decabromodiphenyl ether (BDE-209) was found to be the dominant (more than 50%) PBDEs congener in all consortia, and the percentage of BDE-209 was deceased by 12% (methanol), 11% (ethanol), 8% (acetate), 9% (lactate), 5% (pyruvate), and 11% (no electron donors), while the relative abundances of most lesser-brominated PBDEs increased after 90-day incubation compared to the initial profile of PBDEs. Substantial shifts in the microbial community structure among different amendments were observed based on denaturing gradient gel electrophoresis results. Pseudomonas spp. were identified to be the predominant organisms and the abundances of Band R, which was associated with Pseudomonas sp. SCSWA09, was well correlated with the biodegradation rate of BDE-209. Finally, the microbial community structure was highly correlated with the concentration of deca-BDE, octa-BDE and total nitrogen. These results provide insights into in situ bioremediation of environments contaminated by PBDEs and our understanding of microbial ecology associated with PBDE-debromination.
Collapse
Affiliation(s)
- Mengde Qiu
- State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China, Guangzhou, 510070, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Parsley LC, Newman MM, Liles MR. Fluorescence in situ hybridization of bacterial cell suspensions. Cold Spring Harb Protoc 2010; 2010:pdb.prot5493. [PMID: 20810640 DOI: 10.1101/pdb.prot5493] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of fluorescence in situ hybridization (FISH) to identify and enumerate specific bacteria within a mixed culture or environmental sample has become a powerful tool in combining microscopy with molecular phylogenetic discrimination. However, processing a large number of samples in parallel can be difficult because the bacterial cells are typically fixed and hybridized on microscope slides rather than processed in solution. In addition, gram-positive cells and certain environmental samples present a unique challenge to achievement of adequate cell fixation and uniform hybridization for optimal FISH analysis. Here, we describe a protocol for FISH in solution that can be performed entirely in suspension, in a microcentrifuge tube format, prior to microscopy. This protocol can be applied to both gram-positive and -negative cells, as well as complex microbial assemblages. The method employs a rapid technique for performing multiple hybridizations simultaneously, which may be used to qualitatively assess the presence of specific phylogenetic groups in bacterial cultures or environmental samples, and/or directly quantify fluorescence by fluorometry or flow cytometry.
Collapse
Affiliation(s)
- Larissa C Parsley
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
40
|
Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 2010; 28:308-16. [DOI: 10.1016/j.tibtech.2010.03.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 11/20/2022]
|