1
|
Zamal MY, Subramanyam R. Poly-3-hydroxy butyrate production and it's characterization from a new species, Rhodobacter alkalitolerans strain JA916 T in different growth conditions. Int J Biol Macromol 2025; 309:142790. [PMID: 40185447 DOI: 10.1016/j.ijbiomac.2025.142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/05/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Rhodobacter alkalitolerans strain JA916T (R. alkalitolerans) is a purple non‑sulfur photosynthetic bacterium that grows in alkaline conditions. It is metabolically versatile, and can produce polyhydroxy butyrate (PHB) as internal storage carbon. We observed higher expression of PHB-synthesizing genes and greater PHB production under normal pH (npH) conditions compared to high pH (hpH), along with increased biomass production. The purity of PHB was analyzed using fourier transformed infrared spectroscopy, gas chromatography-mass spectrometry, and proton and carbon nuclear magnetic resonance, confirming it as a polymer of 3-hydroxybutric acid. Furthermore, PHB was characterized using differential scanning calorimetry and thermogravimetric analysis, revealing a melting temperature (Tm) of 177.59 °C and the highest degradation rate at 282.02 °C. This is the first report of high-yield PHB production within 24-28 h of high light exposure to R. alkalitolerans, highlighting its potential as a biodegradable plastic alternative.
Collapse
Affiliation(s)
- Mohammad Yusuf Zamal
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
2
|
Holmes EC, Bleem AC, Johnson CW, Beckham GT. Adaptive laboratory evolution and metabolic engineering of Cupriavidus necator for improved catabolism of volatile fatty acids. Metab Eng 2024; 86:S1096-7176(24)00139-3. [PMID: 39490669 DOI: 10.1016/j.ymben.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Bioconversion of high-volume waste streams into value-added products will be an integral component of the growing bioeconomy. Volatile fatty acids (VFAs) (e.g., butyrate, valerate, and hexanoate) are an emerging and promising waste-derived feedstock for microbial carbon upcycling. Cupriavidus necator H16 is a favorable host for conversion of VFAs into various bioproducts due to its diverse carbon metabolism, ease of metabolic engineering, and use at industrial scales. Here, we report that a common strategy to improve product titers in C. necator, deletion of the polyhydroxybutyrate (PHB) biosynthetic operon, results in a significant growth defect on VFA substrates. Using adaptive laboratory evolution, we identify mutations to the regulator gene phaR, the two-component response regulator-histidine kinase pair encoded by H16_A1372/H16_A1373, and the tripartite transporter assembly encoded by H16_A2296-A2298 as causative for improved growth on VFA substrates. Deletion of phaR and H16_A1373 led to significantly reduced NADH abundance accompanied by large changes to expression of genes involved in carbon metabolism, balance of electron carriers, and oxidative stress tolerance that may be responsible for improved growth of these engineered strains. These results provide insight into the role of PHB biosynthesis in carbon and energy metabolism and highlight a key role for the regulator PhaR in global regulatory networks. By combining mutations, we generated platform strains with significant growth improvements on VFAs, which can enable improved conversion of waste-derived VFA substrates to target bioproducts.
Collapse
Affiliation(s)
- Eric C Holmes
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Alissa C Bleem
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
3
|
Quelas JI, Cabrera JJ, Díaz-Peña R, Sánchez-Schneider L, Jiménez-Leiva A, Tortosa G, Delgado MJ, Pettinari MJ, Lodeiro AR, del Val C, Mesa S. Pleiotropic Effects of PhaR Regulator in Bradyrhizobium diazoefficiens Microaerobic Metabolism. Int J Mol Sci 2024; 25:2157. [PMID: 38396833 PMCID: PMC10888616 DOI: 10.3390/ijms25042157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Bradyrhizobium diazoefficiens can live inside soybean root nodules and in free-living conditions. In both states, when oxygen levels decrease, cells adjust their protein pools by gene transcription modulation. PhaR is a transcription factor involved in polyhydroxyalkanoate (PHA) metabolism but also plays a role in the microaerobic network of this bacterium. To deeply uncover the function of PhaR, we applied a multipronged approach, including the expression profile of a phaR mutant at the transcriptional and protein levels under microaerobic conditions, and the identification of direct targets and of proteins associated with PHA granules. Our results confirmed a pleiotropic function of PhaR, affecting several phenotypes, in addition to PHA cycle control. These include growth deficiency, regulation of carbon and nitrogen allocation, and bacterial motility. Interestingly, PhaR may also modulate the microoxic-responsive regulatory network by activating the expression of fixK2 and repressing nifA, both encoding two transcription factors relevant for microaerobic regulation. At the molecular level, two PhaR-binding motifs were predicted and direct control mediated by PhaR determined by protein-interaction assays revealed seven new direct targets for PhaR. Finally, among the proteins associated with PHA granules, we found PhaR, phasins, and other proteins, confirming a dual function of PhaR in microoxia.
Collapse
Affiliation(s)
- Juan I. Quelas
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata 1900, Argentina; (J.I.Q.); (A.R.L.)
- YPF Tecnología S.A. (Y-TEC), Avenida. del Petróleo Argentino s/n (1923), Berisso 1923, Argentina
| | - Juan J. Cabrera
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.J.C.); (L.S.-S.); (A.J.-L.); (G.T.); (M.J.D.)
| | - Rocío Díaz-Peña
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, C1428EHA, CABA, Buenos Aires 2160, Argentina; (R.D.-P.); (M.J.P.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, C1428EHA, CABA, Buenos Aires 2160, Argentina
| | - Lucía Sánchez-Schneider
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.J.C.); (L.S.-S.); (A.J.-L.); (G.T.); (M.J.D.)
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18016 Granada, Spain;
| | - Andrea Jiménez-Leiva
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.J.C.); (L.S.-S.); (A.J.-L.); (G.T.); (M.J.D.)
| | - Germán Tortosa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.J.C.); (L.S.-S.); (A.J.-L.); (G.T.); (M.J.D.)
| | - María J. Delgado
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.J.C.); (L.S.-S.); (A.J.-L.); (G.T.); (M.J.D.)
| | - M. Julia Pettinari
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, C1428EHA, CABA, Buenos Aires 2160, Argentina; (R.D.-P.); (M.J.P.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, C1428EHA, CABA, Buenos Aires 2160, Argentina
| | - Aníbal R. Lodeiro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT-La Plata, CONICET, La Plata 1900, Argentina; (J.I.Q.); (A.R.L.)
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Coral del Val
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18016 Granada, Spain;
| | - Socorro Mesa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.J.C.); (L.S.-S.); (A.J.-L.); (G.T.); (M.J.D.)
| |
Collapse
|
4
|
Ricci L, Seifert A, Bernacchi S, Fino D, Pirri CF, Re A. Leveraging substrate flexibility and product selectivity of acetogens in two-stage systems for chemical production. Microb Biotechnol 2023; 16:218-237. [PMID: 36464980 PMCID: PMC9871533 DOI: 10.1111/1751-7915.14172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 12/09/2022] Open
Abstract
Carbon dioxide (CO2 ) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2 -dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.
Collapse
Affiliation(s)
- Luca Ricci
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | | | | | - Debora Fino
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Candido Fabrizio Pirri
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| | - Angela Re
- Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
- Centre for Sustainable Future TechnologiesFondazione Istituto Italiano di TecnologiaTurinItaly
| |
Collapse
|