1
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
2
|
Oertel J, Sachs S, Flemming K, Obeid MH, Fahmy K. Distinct Effects of Chemical Toxicity and Radioactivity on Metabolic Heat of Cultured Cells Revealed by “Isotope-Editing”. Microorganisms 2023; 11:microorganisms11030584. [PMID: 36985158 PMCID: PMC10056173 DOI: 10.3390/microorganisms11030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Studying the toxicity of chemical compounds using isothermal microcalorimetry (IMC), which monitors the metabolic heat from living microorganisms, is a rapidly expanding field. The unprecedented sensitivity of IMC is particularly attractive for studies at low levels of stressors, where lethality-based data are inadequate. We have revealed via IMC the effect of low dose rates from radioactive β−-decay on bacterial metabolism. The low dose rate regime (<400 µGyh−1) is typical of radioactively contaminated environmental sites, where chemical toxicity and radioactivity-mediated effects coexist without a predominance or specific characteristic of either of them. We found that IMC allows distinguishing the two sources of metabolic interference on the basis of “isotope-editing” and advanced thermogram analyses. The stable and radioactive europium isotopes 153Eu and 152Eu, respectively, were employed in monitoring Lactococcus lactis cultures via IMC. β−-emission (electrons) was found to increase initial culture growth by increased nutrient uptake efficiency, which compensates for a reduced maximal cell division rate. Direct adsorption of the radionuclide to the biomass, revealed by mass spectrometry, is critical for both the initial stress response and the “dilution” of radioactivity-mediated damage at later culture stages, which are dominated by the chemical toxicity of Eu.
Collapse
Affiliation(s)
- Jana Oertel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Katrin Flemming
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Muhammad Hassan Obeid
- Protection and Safety Department, Atomic Energy Commission of Syria, Damascus P.O. Box 6091, Syria
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
- Correspondence:
| |
Collapse
|
3
|
Zhang L, Li J, Lai JL, Yang X, Zhang Y, Luo XG. Non-targeted metabolomics reveals the stress response of a cellulase-containing penicillium to uranium. J Environ Sci (China) 2022; 120:9-17. [PMID: 35623776 DOI: 10.1016/j.jes.2021.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 06/15/2023]
Abstract
Human industrial activities have caused environmental uranium (U) pollution, resulting in uranium(VI) had radiotoxicity and chemical toxicity. Here, a cellulase-producing Penicillium fungus was screened and characterized by X-ray fluorescence (XRF), and Fourier transform infrared reflection (FT-IR), as well as by GC/MS metabolomics analysis, to study the response to uranium(VI) stress. The biomass of Penicillium decreased after exposure to 100 mg/L U. Uranium combined with carboxyl groups, amino groups, and phosphate groups to form uranium mineralized deposits on the surface of this fungal strain. The α-activity concentration of uranium in the strain was 2.57×106 Bq/kg, and the β-activity concentration was 2.27×105 Bq/kg. Metabolomics analysis identified 118 different metabolites, as well as metabolic disruption of organic acids and derivatives. Further analysis showed that uranium significantly affected the metabolism of 9 amino acids in Penicillium. These amino acids were related to the TCA cycle and ABC transporter. At the same time, uranium exhibited nucleotide metabolism toxicity to Penicillium. This study provides an in-depth understanding of the uranium tolerance mechanism of Penicillium and provides a theoretical basis for Penicillium to degrade hyper-enriched plants.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jie Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin-Long Lai
- Engineering Research Center of Biomass Materials, Ministry of Education of, SWUST, Mianyang 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu Zhang
- Engineering Research Center of Biomass Materials, Ministry of Education of, SWUST, Mianyang 621010, China.
| | - Xue-Gang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education of, SWUST, Mianyang 621010, China
| |
Collapse
|
4
|
Fahmy K. Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms 2022; 10:microorganisms10071397. [PMID: 35889118 PMCID: PMC9318308 DOI: 10.3390/microorganisms10071397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Quantitative analyses of cell replication address the connection between metabolism and growth. Various growth models approximate time-dependent cell numbers in culture media, but physiological implications of the parametrizations are vague. In contrast, isothermal microcalorimetry (IMC) measures with unprecedented sensitivity the heat (enthalpy) release via chemical turnover in metabolizing cells. Hence, the metabolic activity can be studied independently of modeling the time-dependence of cell numbers. Unexpectedly, IMC traces of various origins exhibit conserved patterns when expressed in the enthalpy domain rather than the time domain, as exemplified by cultures of Lactococcus lactis (prokaryote), Trypanosoma congolese (protozoan) and non-growing Brassica napus (plant) cells. The data comply extraordinarily well with a dynamic Langmuir adsorption reaction model of nutrient uptake and catalytic turnover generalized here to the non-constancy of catalytic capacity. Formal relations to Michaelis–Menten kinetics and common analytical growth models are briefly discussed. The proposed formalism reproduces the “life span” of cultured microorganisms from exponential growth to metabolic decline by a succession of distinct metabolic phases following remarkably simple nutrient–metabolism relations. The analysis enables the development of advanced enzyme network models of unbalanced growth and has fundamental consequences for the derivation of toxicity measures and the transferability of metabolic activity data between laboratories.
Collapse
Affiliation(s)
- Karim Fahmy
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany;
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
5
|
Glutathione is involved in the reduction of methylarsenate to generate antibiotic methylarsenite in Enterobacter sp. CZ-1. Appl Environ Microbiol 2022; 88:e0246721. [PMID: 35080903 DOI: 10.1128/aem.02467-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylarsenate (MAs(V)) is a product of microbial arsenic (As) biomethylation and has also been widely used as an herbicide. Some microbes are able to reduce nontoxic MAs(V) to highly toxic methylarsenite (MAs(III)) possibly as an antibiotic. The mechanism of MAs(V) reduction in microbes has not been elucidated. Here, we found that the bacterium Enterobacter sp. CZ-1 isolated from an As-contaminated paddy soil has a strong ability to reduce MAs(V) to MAs(III). Using a MAs(III)-responsive biosensor to detect MAs(V) reduction in E. coli Trans5α transformants of a genomic library of Enterobacter sp. CZ-1, we identified gshA, encoding a glutamate-cysteine ligase, as a key gene involved in MAs(V) reduction. Heterologous expression of gshA increased the biosynthesis of glutathione (GSH) and MAs(V) reduction in E. coli Trans5α. Deletion of gshA in Enterobacter sp. CZ-1 abolished its ability to synthesize GSH and decreased its MAs(V) reduction ability markedly, which could be restored by supplementation of exogenous GSH. In the presence of MAs(V), Enterobacter sp. CZ-1 was able to inhibit the growth of Bacillus subtilis 168; this ability was lost in the gshA-deleted mutant. In addition, deletion of gshA greatly decreased the reduction of arsenate to arsenite. These results indicate that GSH plays an important role in MAs(V) reduction to generate MAs(III) as an antibiotic. IMPORTANCE Arsenic is a ubiquitous environmental toxin. Some microbes detoxify inorganic arsenic through biomethylation, generating relatively nontoxic pentavalent methylated arsenicals, such as methylarsenate. Methylarsenate has also been widely used as an herbicide. Surprisingly, some microbes reduce methylarsenate to highly toxic methylarsenite possibly to use the latter as an antibiotic. How microbes reduce methylarsenate to methylarsenite is unknown. Here, we show that gshA encoding a glutamate-cysteine ligase in the glutathione biosynthesis pathway is involved in methylarsenate reduction in Enterobacter sp. CZ-1. Our study provides new insights into the crucial role of glutathione in the transformation of a common arsenic compound to a natural antibiotic.
Collapse
|
6
|
Kretzschmar J, Strobel A, Haubitz T, Drobot B, Steudtner R, Barkleit A, Brendler V, Stumpf T. Uranium(VI) Complexes of Glutathione Disulfide Forming in Aqueous Solution. Inorg Chem 2020; 59:4244-4254. [PMID: 32148028 DOI: 10.1021/acs.inorgchem.9b02921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interactions between glutathione disulfide, GSSG, the redox partner and dimer of the intracellular detoxification agent glutathione, GSH, and hexavalent uranium, U(VI), were extensively studied by solution NMR (in D2O), complemented by time-resolved laser-induced fluorescence and IR spectroscopies. As expected for the hard Lewis acid U(VI), coordination facilitates by the ligands' O-donor carboxyl groups. However, owing to the adjacent cationic α-amino group, the glutamyl-COO reveal monodentate binding, while the COO of the glycyl residues show bidentate coordination. The log K value for the reaction UO22+ + H3GSSG- → UO2(H3GSSG)+ (pH 3, 0.1 M NaClO4) was determined for the first time, being 4.81 ± 0.08; extrapolation to infinite dilution gave log K⊖ = 5.24 ± 0.08. U(VI) and GSSG form precipitates in the whole pD range studied (2-8), showing least solubility for 4 < pD < 6.5. Thus, particularly GSSG, hereby representing also other peptides and small proteins, affects the mobility of U(VI), strongly depending on the speciation of either component.
Collapse
Affiliation(s)
- Jerome Kretzschmar
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Alexander Strobel
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Toni Haubitz
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Astrid Barkleit
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
7
|
Mumtaz S, Streten C, Parry DL, McGuinness KA, Lu P, Gibb KS. Soil uranium concentration at Ranger Uranium Mine Land Application Areas drives changes in the bacterial community. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:14-23. [PMID: 29549875 DOI: 10.1016/j.jenvrad.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Soil microorganisms may respond to metal stress by a shift in the microbial community from metal sensitive to metal resistant microorganisms. We assessed the bacterial community from low (2-20 mg kg-1), medium (200-400 mg kg-1), high (500-900 mg kg-1) and very high (>900 mg kg-1) uranium soils at Ranger Uranium Mine in northern Australia through pyrosequencing. Proteobacteria (28.85%) was the most abundant phylum at these sites, followed by Actinobacteria (9.31%), Acidobacteria (7.33%), Verrucomicrobia (2.11%), Firmicutes (2.02%), Chloroflexi (1.11%), Cyanobacteria (0.93%), Planctomycetes (0.82%), Bacteroidetes (0.46%) and Candidate_division_WS3 (Latescibacteria) (0.21%). However, 46.79% of bacteria were unclassified. Bacteria at low U soils differed from soils with elevated uranium. Bacterial OTUs closely related to Kitasatospora spp., Sphingobacteria spp. and Rhodobium spp. were only present at higher uranium concentrations and the bacterial community also changed with seasonal and temporal changes in soil uranium and physicochemical variables. This study using next generation sequencing in association with environmental variables at a uranium mine has laid a foundation for further studies of soil-microbe-metal interactions which may be useful for developing sustainable management and rehabilitation strategies. Furthermore, bacterial species associated with higher uranium may serve as useful indicators of uranium contamination in the wet-dry tropics.
Collapse
Affiliation(s)
- Saqib Mumtaz
- Charles Darwin University, Darwin, NT, Australia.
| | | | - David L Parry
- Charles Darwin University, Darwin, NT, Australia; Australian Institute of Marine Science, Darwin, NT, Australia
| | | | - Ping Lu
- Charles Darwin University, Darwin, NT, Australia; Energy Resources of Australia, Darwin, NT, Australia
| | - Karen S Gibb
- Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
8
|
|
9
|
Solioz M. Copper Homeostasis in Gram-Positive Bacteria. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2018. [DOI: 10.1007/978-3-319-94439-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
|
11
|
Sachs S, Geipel G, Bok F, Oertel J, Fahmy K. Calorimetrically Determined U(VI) Toxicity in Brassica napus Correlates with Oxidoreductase Activity and U(VI) Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10843-10849. [PMID: 28841015 DOI: 10.1021/acs.est.7b02564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Radioecological studies depend on the quantitative toxicity assessment of environmental radionuclides. At low dose exposure, the life span of affected organisms is barely shortened, enabling the transfer of radionuclides through an almost-intact food chain. Lethality-based toxicity estimates are not adequate in this regime because they require higher concentrations. However, increased radionuclide concentration alters its speciation, rendering the extrapolation to the low dose exposure chemically inconsistent. Here, we demonstrate that microcalorimetry provides a sensitive real-time monitor of toxicity of uranium (in the U(VI) oxidation state) in a plant cell model of Brassica napus. We introduce the calorimetric descriptor "metabolic capacity" and show that it correlates with enzymatically determined cell viability. It is independent of physiological models and robust against the naturally occurring fluctuations in the metabolic response to U(VI) of plant cell cultures. In combination with time-resolved laser-induced fluorescence spectroscopy and thermodynamic modeling, we show that the plant cell metabolism is affected predominantly by hydroxo-species of U(VI) with an IC50 threshold of ∼90 μM. The data emphasize the yet-little-exploited potential of microcalorimetry for the speciation-sensitive ecotoxicology of radionuclides.
Collapse
Affiliation(s)
- Susanne Sachs
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology , Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Gerhard Geipel
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology , Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology , Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jana Oertel
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology , Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology , Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|