1
|
Zhao F, Mattana A, Alam R, Montgomery SL, Pandya A, Manetti F, Dominguez B, Castagnolo D. Cooperative chemoenzymatic and biocatalytic cascades to access chiral sulfur compounds bearing C(sp 3)-S stereocentres. Nat Commun 2024; 15:8332. [PMID: 39333478 PMCID: PMC11436715 DOI: 10.1038/s41467-024-52608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biocatalysis has been widely employed for the generation of carbon-carbon/heteroatom stereocentres, yet its application in chiral C(sp3)-S bond construction is rare and limited to enzymatic kinetic resolutions. Herein, we describe the enantioselective construction of chiral C(sp3)-S bonds through ene-reductase biocatalyzed conjugate reduction of prochiral vinyl sulfides. A series of cooperative sequential/concurrent chemoenzymatic and biocatalytic cascades have been developed to access a broad range of chiral sulfides, including valuable β-hydroxysulfides bearing two adjacent C(sp3)-S and C(sp3)-O stereocentres, in a stereoconvergent manner with good to excellent yields (up to 96%) and enantioselectivities (up to >99% ee). Notably, this biocatalytic strategy allows to overcome the long-standing shortcomings of catalyst poisoning and C(sp2)/C(sp3)-S bond cleavage faced in transition-metal-catalyzed hydrogenation of vinyl sulfides. Finally, the potential of this methodology is also exemplified by its broader application in the stereoconvergent assembly of chiral C(sp3)-N/O/Se bonds with good to excellent enantioselctivities.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry, University College London, London, UK
| | - Ariane Mattana
- Department of Chemistry, University College London, London, UK
| | - Ruqaiya Alam
- Department of Chemistry, University College London, London, UK
| | | | | | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | |
Collapse
|
2
|
Zhang Q, Pan B, Yang P, Tian J, Zhou S, Xu X, Dai Y, Cheng X, Chen Y, Yang J. Engineering of methionine sulfoxide reductase A with simultaneously improved stability and activity for kinetic resolution of chiral sulfoxides. Int J Biol Macromol 2024; 260:129540. [PMID: 38244733 DOI: 10.1016/j.ijbiomac.2024.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Brain Science, Key Laboratory of Anesthesia and Organ Protection of Ministry of Education, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Bochen Pan
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Piao Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jin Tian
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shihuan Zhou
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xianlin Xu
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yangxue Dai
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaoling Cheng
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiawei Yang
- Department of Biochemistry, School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China.
| |
Collapse
|
3
|
Qin P, Lu XY, Xu JH, Yu HL. Directed evolution of Baeyer-Villiger monooxygenase for highly secretory expressed in Pichia pastoris and efficient preparation of chiral pyrazole sulfoxide. Biotechnol Bioeng 2024; 121:971-979. [PMID: 38088450 DOI: 10.1002/bit.28617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 02/20/2024]
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.
Collapse
Affiliation(s)
- Peng Qin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Sanfilippo C, Cernuto F, Patti A. Expanding the Use of Peroxygenase from Oat Flour in Organic Synthesis: Enantioselective Oxidation of Sulfides. Int J Mol Sci 2023; 24:ijms24087464. [PMID: 37108626 PMCID: PMC10138840 DOI: 10.3390/ijms24087464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Biocatalyzed oxidations are an important target in sustainable synthesis since chemical oxidations often require harsh conditions and metal-based catalysts. A raw peroxygenase-containing enzymatic preparation from oat flour was tested as a biocatalyst for the enantioselective oxidation of sulfides to sulfoxides and the variations of some reaction parameters were evaluated. Under optimal conditions, thioanisole was fully converted into the corresponding (R)-sulfoxide with high optical purity (80% ee) and the same stereopreference was maintained in the oxidation of some other sulfides. Changes in the substituent on the sulfur atom affected the selectivity of the enzyme and the best results were obtained with phenyl methoxymethyl sulfide, which gave the corresponding sulfoxide in 92% ee as exclusive product. The over-oxidation of sulfides to sulfones was instead detected in all the other cases and preferential oxidation of the (S)-enantiomer of the sulfoxide intermediate was observed, albeit with low selectivity. Carrying out the oxidation of thioanisole up to the 29% formation of sulfone led to enhancement of the sulfoxide optical purity (89% ee). The activity in sulfoxidation reactions, in addition to that reported in the epoxidation of different substrates, makes this plant peroxygenase a promising and useful tool in organic synthesis.
Collapse
Affiliation(s)
- Claudia Sanfilippo
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Federica Cernuto
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Angela Patti
- CNR-Istituto di Chimica Biomolecolare, Via Paolo Gaifami 18, I-95126 Catania, Italy
| |
Collapse
|
5
|
Le Viet LH, Nemoto H, Tamura M, Matsuda T. Asymmetric synthesis of sulfoxides by novel baeyer-Villiger monooxygenase from Fusarium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
A novel 4-hydroxyacetophenone monooxygenase featuring aromatic substrates preference for enantioselective access to sulfoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Peng T, Cheng X, Chen Y, Yang J. Sulfoxide Reductases and Applications in Biocatalytic Preparation of Chiral Sulfoxides: A Mini-Review. Front Chem 2021; 9:714899. [PMID: 34490206 PMCID: PMC8417374 DOI: 10.3389/fchem.2021.714899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022] Open
Abstract
Chiral sulfoxides are valuable organosulfur compounds that have been widely used in medicinal and organic synthesis. Biocatalytic approaches for preparing chiral sulfoxides were developed in the past few years, mainly through asymmetric oxidation of prochiral sulfides. Recently, the application of sulfoxide reductase to prepare chiral sulfoxides through kinetic resolution has emerged as a new method, exhibiting extraordinary catalytic properties. This article reviews the chemical and biological functions of these sulfoxide reductases and highlights their applications in chiral sulfoxide preparation.
Collapse
Affiliation(s)
- Tao Peng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Xiaoling Cheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Jiawei Yang
- Department of Biochemistry, Zunyi Medical University, Zunyi, China.,Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Li YJ, Zheng YC, Geng Q, Liu F, Zhang ZJ, Xu JH, Yu HL. Secretory expression of cyclohexanone monooxygenase by methylotrophic yeast for efficient omeprazole sulfide bio-oxidation. BIORESOUR BIOPROCESS 2021; 8:81. [PMID: 38650277 PMCID: PMC10992682 DOI: 10.1186/s40643-021-00430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Prochiral pyrmetazole can be asymmetrically oxidized into (S)-omeprazole, a proton pump inhibitor that is used to treat gastroesophageal reflux, by an engineered cyclohexanone monooxygenase (CHMOAcineto-Mut) that has high stereoselectivity. CHMOAcineto-Mut is produced by heterologous expression in Escherichia coli, where it is expressed intracellularly. Thus, isolating this useful biocatalyst requires tedious cell disruption and subsequent purification, which hinders its use for industrial purposes. Here, we report the extracellular production of CHMOAcineto-Mut by a methylotrophic yeast, Pichia pastoris, for the first time. The recombinant CHMOAcineto-Mut expressed by P. pastoris showed a higher flavin occupation rate than that produced by E. coli, and this was accompanied by a 3.2-fold increase in catalytic efficiency. At a cell density of 150 g/L cell dry weight, we achieved a recombinant CHMOAcineto-Mut production rate of 1,700 U/L, representing approximately 85% of the total protein secreted into the fermentation broth. By directly employing the pH adjusted supernatant as a biocatalyst, we were able to almost completely transform 10 g/L of pyrmetazole into the corresponding (S)-sulfoxide, with > 99% enantiomeric excess.
Collapse
Affiliation(s)
- Ya-Jing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
9
|
Two enantiocomplementary Baeyer-Villiger monooxygenases newly identified for asymmetric oxyfunctionalization of thioether. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Liang D, Xiao C, Song F, Li H, Liu R, Gao J. Complete Genome Sequence and Function Gene Identify of Prometryne-Degrading Strain Pseudomonas sp. DY-1. Microorganisms 2021; 9:microorganisms9061261. [PMID: 34200754 PMCID: PMC8230428 DOI: 10.3390/microorganisms9061261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/02/2022] Open
Abstract
The genus Pseudomonas is widely recognized for its potential for environmental remediation and plant growth promotion. Pseudomonas sp. DY-1 was isolated from the agricultural soil contaminated five years by prometryne, it manifested an outstanding prometryne degradation efficiency and an untapped potential for plant resistance improvement. Thus, it is meaningful to comprehend the genetic background for strain DY-1. The whole genome sequence of this strain revealed a series of environment adaptive and plant beneficial genes which involved in environmental stress response, heavy metal or metalloid resistance, nitrate dissimilatory reduction, riboflavin synthesis, and iron acquisition. Detailed analyses presented the potential of strain DY-1 for degrading various organic compounds via a homogenized pathway or the protocatechuate and catechol branches of the β-ketoadipate pathway. In addition, heterologous expression, and high efficiency liquid chromatography (HPLC) confirmed that prometryne could be oxidized by a Baeyer-Villiger monooxygenase (BVMO) encoded by a gene in the chromosome of strain DY-1. The result of gene knock-out suggested that the sulfate starvation-induced (SSI) genes in this strain might also involve in the process of prometryne degradation. These results would provide the molecular basis for the application of strain DY-1 in various fields and would contribute to the study of prometryne biodegradation mechanism as well.
Collapse
Affiliation(s)
- Dong Liang
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Changyixin Xiao
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haitao Li
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
| | - Rongmei Liu
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
- Correspondence: (R.L.); (J.G.); Tel.: +86-133-5999-0992 (J.G.)
| | - Jiguo Gao
- College of Life Science, Northeast Agricultural University, Harbin 150038, China; (D.L.); (C.X.); (H.L.)
- Correspondence: (R.L.); (J.G.); Tel.: +86-133-5999-0992 (J.G.)
| |
Collapse
|
11
|
Bretschneider L, Heuschkel I, Ahmed A, Bühler K, Karande R, Bühler B. Characterization of different biocatalyst formats for BVMO-catalyzed cyclohexanone oxidation. Biotechnol Bioeng 2021; 118:2719-2733. [PMID: 33844297 DOI: 10.1002/bit.27791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 01/05/2023]
Abstract
Cyclohexanone monooxygenase (CHMO), a member of the Baeyer-Villiger monooxygenase family, is a versatile biocatalyst that efficiently catalyzes the conversion of cyclic ketones to lactones. In this study, an Acidovorax-derived CHMO gene was expressed in Pseudomonas taiwanensis VLB120. Upon purification, the enzyme was characterized in vitro and shown to feature a broad substrate spectrum and up to 100% conversion in 6 h. Furthermore, we determined and compared the cyclohexanone conversion kinetics for different CHMO-biocatalyst formats, that is, isolated enzyme, suspended whole cells, and biofilms, the latter two based on recombinant CHMO-containing P. taiwanensis VLB120. Biofilms showed less favorable values for KS (9.3-fold higher) and kcat (4.8-fold lower) compared with corresponding KM and kcat values of isolated CHMO, but a favorable KI for cyclohexanone (5.3-fold higher). The unfavorable KS and kcat values are related to mass transfer- and possibly heterogeneity issues and deserve further investigation and engineering, to exploit the high potential of biofilms regarding process stability. Suspended cells showed only 1.8-fold higher KS , but 1.3- and 4.2-fold higher kcat and KI values than isolated CHMO. This together with the efficient NADPH regeneration via glucose metabolism makes this format highly promising from a kinetics perspective.
Collapse
Affiliation(s)
- Lisa Bretschneider
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ingeborg Heuschkel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Afaq Ahmed
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
12
|
Liu F, Shou C, Geng Q, Zhao C, Xu J, Yu H. A Baeyer-Villiger monooxygenase from Cupriavidus basilensis catalyzes asymmetric synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. Appl Microbiol Biotechnol 2021; 105:3169-3180. [PMID: 33779786 DOI: 10.1007/s00253-021-11230-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Biocatalytic synthesis of pharmaco-chiral sulfoxides has gained interest in recent years for its environmental friendliness. However, only a few natural biocatalysts can be used for the efficient synthesis of pharmaco-sulfoxides, including (R)-lansoprazole, a chiral proton pump inhibitor used to treat gastrointestinal diseases. In this study, the sequence of BoBVMO (Baeyer-Villiger monooxygenase from Bradyrhizobium oligotrophicum) was used as a probe to identify BVMOs via genomic mining for the highly efficient synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. After virtual sequence filtering, target gene cloning, heterologous expression, and activity screening for lansoprazole sulfide (LPS) monooxygenation, seven new BVMOs were identified among more than 10,000 homologous BVMOs. According to the conserved sequence and phylogenetic tree analysis, these discovered enzymes belong to the family of type I BVMOs and the ethionamide monooxygenase subtype. Among them, CbBVMO, Baeyer-Villiger monooxygenase from Cupriavidus basilensis, showed the highest efficiency and excellent enantioselectivity for converting LPS into (R)-lansoprazole. Moreover, CbBVMO showed a wide substrate spectrum toward other bulky prazole-family sulfides. The results indicate that CbBVMO is a potential enzyme for extending the application of BVMOs in pharmaceutical industry. KEY POINTS: • CbBVMO is the most efficient biocatalyst for (R)-lansoprazole biosynthesis. • CbBVMO catalyzes the conversion of various bulky prazole sulfides. • CbBVMO is a promising enzyme for the biosynthesis of pharmaco-sulfoxides.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chao Shou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
13
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
14
|
Ren SM, Liu F, Wu YQ, Chen Q, Zhang ZJ, Yu HL, Xu JH. Identification two key residues at the intersection of domains of a thioether monooxygenase for improving its sulfoxidation performance. Biotechnol Bioeng 2020; 118:737-744. [PMID: 33073356 DOI: 10.1002/bit.27604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023]
Abstract
AcCHMO, a cyclohexanone monooxygenase from Acinetobacter calcoaceticus, is a typical Type I Baeyer-Villiger monooxygenase (BVMO). We previously obtained the AcCHMOM6 mutant, which oxidizes omeprazole sulfide (OPS) to the chiral sulfoxide drug esomeprazole. To further improve the catalytic efficiency of the AcCHMOM6 mutant, a focused mutagenesis strategy was adopted at the intersections of the FAD-binding domain, NADPH-binding domain, and α-helical domain based on structural characteristics of AcCHMO. By using focused mutagenesis and subsequent global evolution two key residues (L55 and P497) at the intersections of the domains were identified. Mutant of L55Y improved catalytic efficiency significantly, whereas the P497S mutant alleviated substrate inhibition remarkably. AcCHMOM7 (L55Y/P497S) was obtained by combining the two mutations, which increased the specific activity from 18.5 (M6) to 108 U/g, and an increase in the Ki of the substrate OPS from 34 to 265 μM. The results indicate that catalytic performance can be elevated by modification of the sensitive sites at the intersection of the domains of AcCHMO. The results also provided some insights for the engineering of other Type I BVMOs or other multidomain proteins.
Collapse
Affiliation(s)
- Shi-Miao Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yin-Qi Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Ceccoli RD, Bianchi DA, Carabajal MA, Rial DV. Genome mining reveals new bacterial type I Baeyer-Villiger monooxygenases with (bio)synthetic potential. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Xu N, Zhu J, Wu YQ, Zhang Y, Xia JY, Zhao Q, Lin GQ, Yu HL, Xu JH. Enzymatic Preparation of the Chiral (S)-Sulfoxide Drug Esomeprazole at Pilot-Scale Levels. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jun Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin-Qi Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-Ye Xia
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., 766 Kening Road, Nanjing 211112, China
| | - Guo-Qiang Lin
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical Co., Ltd., 766 Kening Road, Nanjing 211112, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Discovery and application of methionine sulfoxide reductase B for preparation of (S)-sulfoxides through kinetic resolution. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
19
|
Majeed A, Majeed M, Thajuddin N, Arumugam S, Ali F, Beede K, Adams SJ, Gnanamani M. Bioconversion of curcumin into calebin-A by the endophytic fungus Ovatospora brasiliensis EPE-10 MTCC 25236 associated with Curcuma caesia. AMB Express 2019; 9:79. [PMID: 31144200 PMCID: PMC6541684 DOI: 10.1186/s13568-019-0802-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/17/2019] [Indexed: 11/10/2022] Open
Abstract
Calebin-A is a curcuminoid compound reported to be present in Curcuma longa rhizome. The current study was aimed to isolate and characterize calebin-A from Curcuma caesia rhizome and its production through biotransformation approach using endophytic fungus. C. caesia rhizomes of different ages were subjected to analysis in order to investigate the age at which maximum calebin-A content is present. HP-TLC profiles, HPLC retention times and mass spectrometry detector confirmed the occurrence of calebin-A in C. caesia rhizomes of 12 to 14 months of age but not in rhizomes younger to 12 months. Furthermore, an endophytic fungus strain, EPE-10 that was isolated from the medicinal plant C. caesia was identified as Ovatospora brasiliensis based on morphological and molecular characteristics. This strain O. brasiliensis was deposited to the culture collected centre, MTCC Chandigarh, India under the Budapest treaty and was designated with the Accession Number MTCC 25236. Biotransformation process was carried out at 37 ± 0.5 °C with shaking for 7 days after addition of 0.01% w/v curcumin. Extraction of biotransformed products was done by following partition method and the extracts obtained were analyzed using HPTLC, HPLC and LCMS. The data of the study suggested that O. brasiliensis MTCC 25236 was found to convert curcumin to calebin-A in a time dependant manner with optimum conversion at 48 h. Furthermore, O. brasiliensis MTCC 25236 was found to be positive for the Baeyer-Villiger monooxygenase (BVMOs) enzyme activity which could possibly be the mechanism of this bioconversion. The results of this study for the first time indicated that the endophytic fungus identified as O. brasiliensis MTCC 25236 isolated from the C. caesia rhizome could be a possible source for naturally producing calebin-A.
Collapse
|
20
|
Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Appl Environ Microbiol 2019; 85:AEM.00239-19. [PMID: 30926727 DOI: 10.1128/aem.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 11/20/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are an emerging class of promising biocatalysts for the oxidation of ketones to prepare corresponding esters or lactones. Although many BVMOs have been reported, the development of highly efficient enzymes for use in industrial applications is desirable. In this work, we identified a BVMO from Rhodococcus pyridinivorans (BVMORp) with a high affinity toward aliphatic methyl ketones (Km < 3.0 μM). The enzyme was highly soluble and relatively stable, with a half-life of 23 h at 30°C and pH 7.5. The most effective substrate discovered so far is 2-hexanone (k cat = 2.1 s-1; Km = 1.5 μM). Furthermore, BVMORp exhibited excellent regioselectivity toward most aliphatic ketones, preferentially forming typical (i.e., normal) products. Using the newly identified BVMORp as the catalyst, a high concentration (26.0 g/liter; 200 mM) of methyl levulinate was completely converted to methyl 3-acetoxypropionate after 4 h, with a space-time yield of 5.4 g liter-1 h-1 Thus, BVMORp is a promising biocatalyst for the synthesis of 3-hydroxypropionate from readily available biobased levulinate to replace the conventional fermentation.IMPORTANCE BVMOs are emerging as a green alternative to traditional oxidants in the BV oxidation of ketones. Although many BVMOs are discovered and used in organic synthesis, few are really applied in industry, especially in the case of aliphatic ketones. Herein, a highly soluble and relatively stable monooxygenase from Rhodococcus pyridinivorans (BVMORp) was identified with high activity and excellent regioselectivity toward most aliphatic ketones. BVMORp possesses unusually high substrate loading during the catalysis of the oxidation of biobased methyl levulinate to 3-hydroxypropionic acid derivatives. This study indicates that the synthesis of 3-hydroxypropionate from readily available biobased levulinate by BVMORp-catalyzed oxidation holds great promise to replace traditional fermentation.
Collapse
|
21
|
Abstract
The production of chiral sulphoxides is an important part of the chemical industry since they have been used not only as pharmaceuticals and pesticides, but also as catalysts or functional materials. The main purpose of this review is to present biotechnological methods for the oxidation of sulfides. The work consists of two parts. In the first part, examples of biosyntransformation of prochiral sulfides using whole cells of bacteria and fungi are discussed. They have more historical significance due to the low predictability of positive results in relation to the workload. In the second part, the main enzymes responsible for sulfoxidation have been characterized such as chloroperoxidase, dioxygenases, cytochrome flavin-dependent monooxygenases, and P450 monooxygenases. Particular emphasis has been placed on the huge variety of cytochrome P450 monooxygenases, and flavin-dependent monooxygenases, which allows for pure sulfoxides enantiomers effectively to be obtained. In the summary, further directions of research on the optimization of enzymatic sulfoxidation are indicated.
Collapse
|