1
|
Chaikaew S, Watanabe Y, Zheng D, Motojima F, Yamaguchi T, Asano Y. Structure-Based Site-Directed Mutagenesis of Hydroxynitrile Lyase from Cyanogenic Millipede, Oxidus gracilis for Hydrocyanation and Henry Reactions. Chembiochem 2024; 25:e202400118. [PMID: 38526556 DOI: 10.1002/cbic.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Å resolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.
Collapse
Affiliation(s)
- Siriporn Chaikaew
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Yukio Watanabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Daijun Zheng
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Asano Active Enzyme Molecule Project, ERATO, JST
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
2
|
Liang GT, Lai C, Yue Z, Zhang H, Li D, Chen Z, Lu X, Tao L, Subach FV, Piatkevich KD. Enhanced small green fluorescent proteins as a multisensing platform for biosensor development. Front Bioeng Biotechnol 2022; 10:1039317. [PMID: 36324888 PMCID: PMC9618808 DOI: 10.3389/fbioe.2022.1039317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Engineered light, oxygen, and voltage (LOV)-based proteins are able to fluoresce without oxygen requirement due to the autocatalytic incorporation of exogenous flavin as a chromophore thus allowing for live cell imaging under hypoxic and anaerobic conditions. They were also discovered to have high sensitivity to transition metal ions and physiological flavin derivatives. These properties make flavin-binding fluorescent proteins (FPs) a perspective platform for biosensor development. However, brightness of currently available flavin-binding FPs is limited compared to GFP-like FPs creating a need for their further enhancement and optimization. In this study, we applied a directed molecular evolution approach to develop a pair of flavin-binding FPs, named miniGFP1 and miniGFP2. The miniGFP proteins are characterized by cyan-green fluorescence with excitation/emission maxima at 450/499 nm and a molecular size of ∼13 kDa. We carried out systematic benchmarking of miniGFPs in Escherichia coli and cultured mammalian cells against spectrally similar FPs including GFP-like FP, bilirubin-binding FP, and bright flavin-binding FPs. The miniGFPs proteins exhibited improved photochemical properties compared to other flavin-binding FPs enabling long-term live cell imaging. We demonstrated the utility of miniGFPs for live cell imaging in bacterial culture under anaerobic conditions and in CHO cells under hypoxia. The miniGFPs’ fluorescence was highly sensitive to Cu(II) ions in solution with Kd values of 67 and 68 nM for miniGFP1 and miniGFP2, respectively. We also observed fluorescence quenching of miniGFPs by the reduced form of Cu(I) suggesting its potential application as an optical indicator for Cu(I) and Cu(II). In addition, miniGFPs showed the ability to selectively bind exogenous flavin mononucleotide demonstrating a potential for utilization as a selective fluorescent flavin indicator. Altogether, miniGFPs can serve as a multisensing platform for fluorescence biosensor development for in vitro and in-cell applications.
Collapse
Affiliation(s)
- Guo-Teng Liang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cuixin Lai
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zejun Yue
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Xi’an Jiao Tong University, Xi’an, Shaanxi, China
| | - Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Danyang Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Liang Tao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- *Correspondence: Kiryl D. Piatkevich,
| |
Collapse
|
3
|
Pei X, Wang J, Zheng H, Xiao Q, Wang A, Su W. Catalytically active inclusion bodies (CatIBs) induced by terminally attached self-assembling coiled-coil domains: To enhance the stability of (R)-hydroxynitrile lyase. Enzyme Microb Technol 2021; 153:109915. [PMID: 34670185 DOI: 10.1016/j.enzmictec.2021.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
The catalytically-active inclusion bodies (CatIBs) represent a promising strategy for immobilizing enzyme without additional carriers and chemicals, which has aroused great attention in academic and industrial communities. In this work, we discovered two natural parallel right-handed coiled-coil tetramer peptides from PDB database by a structural mining strategy. The two self-assembling peptides, NSPdoT from rotavirus and HVdoT from human Vasodilator-stimulated phosphoprotein, efficiently induced the CatIBs formation of a (R)-Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) in Escherichia coli cells. This is convenient to simultaneously purify and immobilize the target proteins as biocatalysts. As expected, HVdoT-AtHNL and NSPdoT-AtHNL possessed drastically increased tolerance toward lower pH values, which will be very critical to synthesize cyanohydrins under acidic condition for suppressing the non-enzymatic side reaction. In addition. AtHNL-CatIBs are produced at high yield in host cells as bioactive microparticles, which exhibited high thermal and pH stabilities. Therefore, the CatIBs method represent a promising application for the immobilization of enzymes in the biocatalysis field.
Collapse
Affiliation(s)
- Xiaolin Pei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China; College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.
| | - Jiapao Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Rao DHS, Shivani K, Padhi SK. Immobilized Arabidopsis thaliana Hydroxynitrile Lyase-Catalyzed Retro-Henry Reaction in the Synthesis of (S)-β-Nitroalcohols. Appl Biochem Biotechnol 2020; 193:560-576. [PMID: 33044692 DOI: 10.1007/s12010-020-03442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
Enantiopure β-nitroalcohols are versatile intermediates used in the synthesis of important pharmaceuticals and chiral synthons. In this article, immobilized Arabidopsis thaliana HNL (AtHNL)-catalyzed preparation of (S)-β-nitroalcohols from their racemic mixtures via retro-Henry reaction was studied. AtHNL used in biocatalysis was immobilized by physical adsorption in inexpensive celite®545. Under optimized biocatalytic conditions, the total turnover number of the catalyst has improved 2.3-fold for (S)-2-nitro-1-phenylethanol (NPE) synthesis, than free enzyme catalysis. This study reported for the first time celite-AtHNL-catalyzed retro-Henry reaction at low pH. At pH 4.5 and 5.0, 62% ee and 41% conversion, and 97% ee and 42% conversion of (S)-NPE were obtained respectively, while the free enzyme inactivates at pH < 5.0. The increased catalytic efficiency and pH stability of the catalyst could be possibly due to increased stability of AtHNL by immobilization. A dozen of racemic β-nitroalcohols were converted into their corresponding (S)-β-nitroalcohols using this reaction; among them, eight were not tested earlier. The immobilized enzyme has showed broad substrate selectivity in the retro-Henry reaction, and products were obtained up to 98.5% ee.
Collapse
Affiliation(s)
- D H Sreenivasa Rao
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kummari Shivani
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Santosh Kumar Padhi
- Biocatalysis and Enzyme Engineering Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Ozbakir HF, Anderson NT, Fan KC, Mukherjee A. Beyond the Green Fluorescent Protein: Biomolecular Reporters for Anaerobic and Deep-Tissue Imaging. Bioconjug Chem 2020; 31:293-302. [PMID: 31794658 PMCID: PMC7033020 DOI: 10.1021/acs.bioconjchem.9b00688] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging represents cornerstone technology for studying biological function at the cellular and molecular levels. The technology's centerpiece is a prolific collection of genetic reporters based on the green fluorescent protein (GFP) and related analogs. More than two decades of protein engineering have endowed the GFP repertoire with an incredible assortment of fluorescent proteins, allowing scientists immense latitude in choosing reporters tailored to various cellular and environmental contexts. Nevertheless, GFP and derivative reporters have specific limitations that hinder their unrestricted use for molecular imaging. These challenges have inspired the development of new reporter proteins and imaging mechanisms. Here, we review how these developments are expanding the frontiers of reporter gene techniques to enable nondestructive studies of cell function in anaerobic environments and deep inside intact animals-two important biological contexts that are fundamentally incompatible with the use of GFP-based reporters.
Collapse
Affiliation(s)
- Harun F. Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Nolan T. Anderson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kang-Ching Fan
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Arnab Mukherjee
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Jangir N, Preeti, Padhi SK. A study on increasing enzymatic stability and activity of Baliospermum montanum hydroxynitrile lyase in biocatalysis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability. Appl Environ Microbiol 2019; 85:AEM.03084-18. [PMID: 30737350 DOI: 10.1128/aem.03084-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1) coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation prone and are mainly expressed as catalytically active inclusion bodies in Escherichia coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis (PyTreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constant, K eq, for the reversible synthesis of trehalose from glucose and a nucleotide sugar was determined in both the synthesis and hydrolysis directions utilizing UDP-glucose and ADP-glucose, respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control.IMPORTANCE The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here, we present an efficient methodology for the production and analysis of a thermostable, aggregation-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis directions. Our results show that uridine establishes an equilibrium constant which is more in favor of the product trehalose than when adenosine is employed as the nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control as the position of the equilibrium depends solely on the reaction conditions and is not affected by the nature of the catalyst.
Collapse
|
8
|
The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 2016; 100:8273-81. [PMID: 27541749 DOI: 10.1007/s00253-016-7795-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.
Collapse
|
9
|
Diener M, Kopka B, Pohl M, Jaeger KE, Krauss U. Fusion of a Coiled-Coil Domain Facilitates the High-Level Production of Catalytically Active Enzyme Inclusion Bodies. ChemCatChem 2015. [DOI: 10.1002/cctc.201501001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Diener
- Institut für Molekulare Enzymtechnologie; Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich; 52426 Jülich Germany
| | - Benita Kopka
- Institut für Molekulare Enzymtechnologie; Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich; 52426 Jülich Germany
| | - Martina Pohl
- Bioeconomy Science Center (BioSc); 52426 Jülich Germany
- IBG-1: Biotechnology; Forschungszentrum Jülich GmbH and Bioeconomy Science Center (BioSc), Wilhelm-Johnen-Strasse; 52425 Jülich Germany
| | - Karl-Erich Jaeger
- Institut für Molekulare Enzymtechnologie; Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich; 52426 Jülich Germany
- Bioeconomy Science Center (BioSc); 52426 Jülich Germany
- IBG-1: Biotechnology; Forschungszentrum Jülich GmbH and Bioeconomy Science Center (BioSc), Wilhelm-Johnen-Strasse; 52425 Jülich Germany
| | - Ulrich Krauss
- Institut für Molekulare Enzymtechnologie; Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich; 52426 Jülich Germany
- Bioeconomy Science Center (BioSc); 52426 Jülich Germany
| |
Collapse
|
10
|
The potential of clostridial spores as therapeutic delivery vehicles in tumour therapy. Res Microbiol 2015; 166:244-54. [DOI: 10.1016/j.resmic.2014.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 01/19/2023]
|
11
|
Kopka B, Diener M, Wirtz A, Pohl M, Jaeger KE, Krauss U. Purification and simultaneous immobilization of Arabidopsis thaliana hydroxynitrile lyase using a family 2 carbohydrate-binding module. Biotechnol J 2015; 10:811-9. [PMID: 25755120 DOI: 10.1002/biot.201400786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 11/12/2022]
Abstract
Tedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems.
Collapse
Affiliation(s)
- Benita Kopka
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Ullrich KK, Hiss M, Rensing SA. Means to optimize protein expression in transgenic plants. Curr Opin Biotechnol 2015; 32:61-67. [DOI: 10.1016/j.copbio.2014.11.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 10/29/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
|
13
|
Mukherjee A, Schroeder CM. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 2015; 31:16-23. [DOI: 10.1016/j.copbio.2014.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
|
14
|
Wingen M, Potzkei J, Endres S, Casini G, Rupprecht C, Fahlke C, Krauss U, Jaeger KE, Drepper T, Gensch T. The photophysics of LOV-based fluorescent proteins – new tools for cell biology. Photochem Photobiol Sci 2014; 13:875-83. [DOI: 10.1039/c3pp50414j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study photophysical characteristics of LOV-based fluorescent proteins which are essential for analytic methods as well as imaging approaches have been comparatively analyzed in detail.
Collapse
Affiliation(s)
- Marcus Wingen
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Janko Potzkei
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Stephan Endres
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Giorgia Casini
- Institute of Complex Systems 4 (ICS-4
- Cellular Biophysics)
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Christian Rupprecht
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4 (ICS-4
- Cellular Biophysics)
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology
- Heinrich-Heine-University Düsseldorf
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (ICS-4
- Cellular Biophysics)
- Forschungszentrum Jülich
- 52425 Jülich, Germany
| |
Collapse
|