1
|
Carbon HN, Aplin JJ, Jiang GZ, Gibney PA, Edwards CG. Fate of carbon in synthetic media fermentations containing Metschnikowia pulcherrima or Meyerozyma guilliermondii in the presence and absence of Saccharomyces cerevisiae. Food Microbiol 2023; 114:104308. [PMID: 37290869 DOI: 10.1016/j.fm.2023.104308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
While sequentially inoculating non-Saccharomyces yeasts with Saccharomyces cerevisiae can lower the alcohol contents of wine, the abilities of these yeasts to utilize/produce ethanol or generate other byproducts remained unclear. Metschnikowia pulcherrima or Meyerozyma guilliermondii were inoculated into media with or without S. cerevisiae to assess byproduct formation. Both species metabolized ethanol in a yeast-nitrogen-base medium but produced the alcohol in a synthetic grape juice medium. In fact, Mt. pulcherrima and My. guilliermondii generated less ethanol per gram of metabolized sugar (0.372 and 0.301 g/g, respectively) compared to S. cerevisiae (0.422 g/g). Sequentially inoculating each non-Saccharomyces species with S. cerevisiae into grape juice media achieved up to 3.0% v/v alcohol reduction compared to S. cerevisiae alone while producing variable glycerol, succinic acid, and acetic acid concentrations. However, neither non-Saccharomyces yeasts released appreciable CO2 under fermentative conditions regardless of incubation temperature. Despite equivalent peak populations, S. cerevisiae produced more biomass (2.98 g/L) than the non-Saccharomyces yeasts while sequential inoculations yielded higher biomass with Mt. pulcherrima (3.97 g/L) but not My. guilliermondii (3.03 g/L). To reduce ethanol concentrations, these non-Saccharomyces species may metabolize ethanol and/or produce less from metabolized sugars compared to S. cerevisiae but also divert carbon towards glycerol, succinic acid, and/or biomass.
Collapse
Affiliation(s)
- Heather N Carbon
- School of Food Science, Washington State University, Pullman, WA, 99164-6376, USA
| | - Jesse J Aplin
- School of Food Science, Washington State University, Pullman, WA, 99164-6376, USA; Presently Affiliated with United States Pharmacopeia, Rockville, MD, 20852, USA
| | - Glycine Z Jiang
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Charles G Edwards
- School of Food Science, Washington State University, Pullman, WA, 99164-6376, USA.
| |
Collapse
|
2
|
The impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose alcoholic fermentation in the engineered yeast Saccharomyces cerevisiae. Antonie van Leeuwenhoek 2021; 114:1373-1385. [PMID: 34170419 DOI: 10.1007/s10482-021-01607-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/18/2021] [Indexed: 01/14/2023]
Abstract
Lignocellulosic biomass is an attractive sustainable platform for fuel ethanol production. Xylose is a second after glucose most abounded sugar in lignocellulosic hydrolysates. Effective conversion of xylose to ethanol is one of key prerequisite for the development of an efficient conversion of biomass to ethanol. Engineered Saccharomyces cerevisiae strains are able to xylose fermentation. However, the yield and productivities of xylose fermentation remains lower in comparison with glucose fermentation. In this work, we studied impact of transcription factors Znf1, Sip4, Adr1, Tup1, and Hap4 on xylose catabolism. We have isolated znf1Δ, adr1Δ, tup1Δ and hap4Δ mutants, and strains overexpressing SIP4, ADR1 and HAP4 genes on the background of xylose-fermenting strain of S. cerevisiae aiming to explore involvement of these transcription factors in regulation of xylose growth and fermentation. It was shown that hap4Δ reveal 1.8-fold increase of ethanol production from xylose as compared to that of parental strain. The hap4Δ mutant accumulates 10.38 g l-1 of ethanol with an overall ethanol yield reaching 0.41 g g-1 of consumed xylose. While the other constructed strains revealed a decrease in ethanol production from this pentose.
Collapse
|
3
|
Two homologs of the Cat8 transcription factor are involved in the regulation of ethanol utilization in Komagataella phaffii. Curr Genet 2021; 67:641-661. [PMID: 33725138 PMCID: PMC8254726 DOI: 10.1007/s00294-021-01165-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/26/2022]
Abstract
The transcription factors Cat8 and Sip4 were described in Saccharomyces cerevisiae and Kluyveromyces lactis to have very similar DNA binding domains and to be necessary for derepression of a variety of genes under non-fermentative growth conditions via binding to the carbon source responsive elements (CSREs). The methylotrophic yeast Komagataella phaffii (syn Pichia pastoris) has two transcription factors (TFs), which are putative homologs of Cat8 based on sequence similarity, termed Cat8-1 and Cat8-2. It is yet unclear in which cellular processes they are involved and if one of them is actually the homolog of Sip4. To study the roles of the Cat8 homologs in K. phaffii, overexpression or deletion strains were generated for the two TFs. The ability of these mutant strains to grow on different carbon sources was tested, and transcript levels of selected genes from the carbon metabolism were quantified. Our experiments showed that the TFs are required for the growth of K. phaffii on C2 carbon sources, but not on glucose, glycerol or methanol. K. phaffii deleted for Cat8-1 showed impaired growth on acetate, while both Cat8-1 and Cat8-2 are involved in the growth of K. phaffii on ethanol. Correspondingly, both TFs are participating in the activation of ADH2, ALD4 and ACS1, three genes encoding enzymes important for the assimilation of ethanol. Different from S. cerevisiae and K. lactis, Cat8-1 is not regulating the transcription of the putative Sip4-family member Cat8-2 in K. phaffii. Furthermore, Cat8-1 is necessary for the activation of genes from the glyoxylate cycle, whereas Cat8-2 is necessary for the activation of genes from the carnitine shuttle. Neither Cat8-1 nor Cat8-2 are required for the activation of gluconeogenesis genes. Finally, the CAT8-2 gene is repressed by the Mig1-2 transcription factor on glucose and autorepressed by the Cat8-2 protein on all tested carbon sources. Our study identified the involvement of K. phaffii Cat8-1 and Cat8-2 in C2-metabolism, and highlighted similarities and differences to their homologs in other yeast species.
Collapse
|
4
|
Yan W, Gao H, Qian X, Jiang Y, Zhou J, Dong W, Xin F, Zhang W, Jiang M. Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnol Adv 2020; 46:107674. [PMID: 33276074 DOI: 10.1016/j.biotechadv.2020.107674] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/31/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Unconventional yeasts have attracted increased attentions owning to their unique biochemical properties and potential application in the biotechnological process. With the rapid development of microbial isolation tools and synthetic biology, more promising industrial yeasts have been isolated and characterized. Meyerozyma guilliermondii (anamorph Candida guilliermondii) is an ascomycetous yeast with several unique characteristics and physiology, such as the wide substrates spectrum and capability of various chemicals synthesis. The potential physiological and metabolic capabilities of M. guilliermondii, which can utilize various carbon sources including typical hydrophilic and hydrophobic materials were first reviewed in this review. Moreover, the wide applications of M. guilliermondii, such as for industrial enzymes production, metabolites synthesis and biocontrol were also reviewed. With the development of system and synthetic biology, M. guilliermondii will provide new opportunities for potential applications in biotechnology sectors in the future.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, PR China.
| |
Collapse
|
5
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
6
|
Fabricio MF, Valente P, Záchia Ayub MA. Oleaginous yeast Meyerozyma guilliermondii shows fermentative metabolism of sugars in the biosynthesis of ethanol and converts raw glycerol and cheese whey permeate into polyunsaturated fatty acids. Biotechnol Prog 2019; 35:e2895. [PMID: 31425639 DOI: 10.1002/btpr.2895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/24/2019] [Accepted: 08/14/2019] [Indexed: 11/05/2022]
Abstract
We studied the biotechnological potential of the recently isolated yeast Meyerozyma guilliermondii BI281A to produce polyunsaturated fatty acids and ethanol, comparing products yields using glucose, raw glycerol from biodiesel synthesis, or whey permeate as substrates. The yeast metabolism was evaluated for different C/N ratios (100:1 and 50:1). Results found that M. guilliermondii BI281A was able to assimilate all tested substrates, and the most efficient conversion obtained was observed using raw glycerol as carbon source (C/N ratio 50:1), concerning biomass formation (5.67 g·L-1 ) and lipid production (1.04 g·L-1 ), representing 18% of dry cell weight. Bioreactors experiments under pH and aeration-controlled conditions were conducted. Obtained fatty acids were composed of ~67% of unsaturated fatty acids, distributed as palmitoleic acid (C16:1 , 9.4%), oleic acid (C18:1 , 47.2%), linoleic acid (C18:2 n-6 , 9.6%), and linolenic acid (C18:3 n-3 , 1.3%). Showing fermentative metabolism, which is unusual for oleaginous yeasts, M. guilliermondii produced 13.7 g·L-1 of ethanol (yields of 0.27) when growing on glucose medium. These results suggest the promising use of this uncommonly studied yeast to produce unsaturated fatty acids and ethanol using cheap agro-industrial residues as substrates in bioprocess.
Collapse
Affiliation(s)
- Mariana Fensterseifer Fabricio
- Biotechnology Laboratory (BiotecLab) of Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Valente
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology Laboratory (BiotecLab) of Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Davy AM, Kildegaard HF, Andersen MR. Cell Factory Engineering. Cell Syst 2019; 4:262-275. [PMID: 28334575 DOI: 10.1016/j.cels.2017.02.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories.
Collapse
Affiliation(s)
- Anne Mathilde Davy
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Du ZQ, Zhang Y, Qian ZG, Xiao H, Zhong JJ. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum. Biotechnol Bioeng 2017; 114:2794-2806. [DOI: 10.1002/bit.26396] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Zhi-Qiang Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Yuan Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Han Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
9
|
Rodríguez Madrera R, Pando Bedriñana R, Suárez Valles B. Enhancement of the nutritional properties of apple pomace by fermentation with autochthonous yeasts. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Bolotin-Fukuhara M. Thirty years of the HAP2/3/4/5 complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:543-559. [DOI: 10.1016/j.bbagrm.2016.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
|
11
|
Ruchala J, Kurylenko OO, Soontorngun N, Dmytruk KV, Sibirny AA. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Microb Cell Fact 2017; 16:36. [PMID: 28245828 PMCID: PMC5331723 DOI: 10.1186/s12934-017-0652-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 11/16/2022] Open
Abstract
Background Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. Results Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive promoter GAP of glyceraldehyde-3-phosphate dehydrogenase. Corresponding strains showed drop in ethanol production in xylose medium whereas glucose alcoholic fermentation remained unchanged. Available data suggest on specific role of Cat8 in xylose alcoholic fermentation. Conclusions The CAT8 gene is one of the first identified genes specifically involved in regulation of xylose alcoholic fermentation in the natural xylose-fermenting yeast O. polymorpha. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | | | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Biotechnology and Microbiology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland. .,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Drahomanov Str., 14/16, Lviv, 79005, Ukraine.
| |
Collapse
|
12
|
Defosse TA, Mélin C, Clastre M, Besseau S, Lanoue A, Glévarec G, Oudin A, Dugé de Bernonville T, Vandeputte P, Linder T, Bouchara JP, Courdavault V, Giglioli-Guivarc'h N, Papon N. An additionalMeyerozyma guilliermondii IMH3gene confers mycophenolic acid resistance in fungal CTG clade species. FEMS Yeast Res 2016; 16:fow078. [DOI: 10.1093/femsyr/fow078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 01/11/2023] Open
|
13
|
Sokolov SS, Balakireva AV, Markova OV, Severin FF. Negative Feedback of Glycolysis and Oxidative Phosphorylation: Mechanisms of and Reasons for It. BIOCHEMISTRY (MOSCOW) 2016; 80:559-64. [PMID: 26071773 DOI: 10.1134/s0006297915050065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There are two main pathways of ATP biosynthesis: glycolysis and oxidative phosphorylation. As a rule, the two pathways are not fully active in a single cell. In this review, we discuss mechanisms of glycolytic inhibition of respiration (Warburg and Crabtree effects). What are the reasons for the existence of this negative feedback? It is known that maximal activation of both processes can cause generation of reactive oxygen species. Oxidative phosphorylation is more efficient from the energy point of view, while glycolysis is safer and favors biomass synthesis. This might be the reason why quiescent cells are mainly using oxidative phosphorylation, while the quickly proliferating ones - glycolysis.
Collapse
Affiliation(s)
- S S Sokolov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
14
|
Natural Diversity in Pentose Fermentation Is Explained by Variations in Histone Deacetylases. Cell Rep 2016; 14:458-463. [DOI: 10.1016/j.celrep.2015.12.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022] Open
|
15
|
Matsushika A, Hoshino T. Increased ethanol production by deletion of HAP4 in recombinant xylose-assimilating Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2015; 42:1623-31. [DOI: 10.1007/s10295-015-1695-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
Abstract
The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.
Collapse
Affiliation(s)
- Akinori Matsushika
- grid.208504.b 0000 0001 2230 7538 Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 3-11-32 Kagamiyama, Higashi-Hiroshima 739-0046 Hiroshima Japan
| | - Tamotsu Hoshino
- grid.208504.b 0000 0001 2230 7538 Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 3-11-32 Kagamiyama, Higashi-Hiroshima 739-0046 Hiroshima Japan
| |
Collapse
|