1
|
Chen A. Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives. Food Sci Biotechnol 2024; 33:2953-2969. [PMID: 39220313 PMCID: PMC11364746 DOI: 10.1007/s10068-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024] Open
Abstract
Frozen dough technology is important in modern bakery operations, facilitating the transportation of dough at low temperatures to downstream sales points. However, the freeze-thaw process imposes significant stress on baker's yeast, resulting in diminished viability and fermentation capacity. Understanding the mechanisms underlying freeze-thaw stress is essential for mitigating its adverse effects on yeast performance. This review delves into the intricate mechanisms underlying freeze-thaw stress, focusing specifically on Saccharomyces cerevisiae, the primary yeast used in baking, and presents a wide range of biotechnological approaches to enhance freeze-thaw resistance in S. cerevisiae. Strategies include manipulating intracellular metabolites, altering membrane composition, managing antioxidant defenses, mediating aquaporin expression, and employing adaptive evolutionary and breeding techniques. Addressing challenges and strategies associated with freeze-thaw stress, this review provides valuable insights for future research endeavors, aiming to enhance the freeze-thaw tolerance of baker's yeast and contribute to the advancement of bakery science.
Collapse
Affiliation(s)
- Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
2
|
Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae. Sci Rep 2022; 12:13632. [PMID: 35948747 PMCID: PMC9365205 DOI: 10.1038/s41598-022-17935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Shellfish aquaculture needs the development of new tools for the improvement of good practices avoiding the reliance on natural spat collection to increase production efficiently. The aim of this work was to improve the cryopreservation protocol for Mytilus galloprovincialis larvae described in Paredes et al. (in: Wolkers, Oldenhof (eds) Cryopreservation and freeze-drying protocol, methods in molecular biology, Humana Press, 2021, pp 2180, 10.1007/978-1-0716-0783-1_18). Moreover, the capability of producing adult mussels from cryopreserved 72 h-old D-larvae and potential long-term effects of cryopreservation through progenies were evaluated. The selection of 72-h old D-larvae for cryopreservation yielded 75% of recovery, higher than 50% from trochophores. The best combination was 10% Ethylene–Glycol + 0.4 M Trehalose in Filtered Sea Water (FSW) with cooling at − 1 °C/min and a water bath at 35 °C for thawing. Sucrose (SUC) solutions did not improve larval recovery (p > 0.05). At settlement, 5.26% of cryopreserved F1 larvae survived and over 70% settled. F2 cryopreservation produced 0.15% survival of spat and settlement varied from 35 to 50%. The delay of shell size showed on cryopreserved larvae declined throughout larval rearing without significant differences with controls from settlement point (p > 0.05). Long-term experiments showed that it is possible to obtain adult mussels from cryopreserved larvae and this tool does not compromise the quality of following progenies, neither for cryopreservation nor post-thawing development of them.
Collapse
|
3
|
Kim B, Yoon H, Kim T, Lee S. Role of Klotho as a Modulator of Oxidative Stress Associated with Ovarian Tissue Cryopreservation. Int J Mol Sci 2021; 22:ijms222413547. [PMID: 34948343 PMCID: PMC8707502 DOI: 10.3390/ijms222413547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian tissue cryopreservation is the only option for preserving fertility in adult and prepubertal cancer patients who require immediate chemotherapy or do not want ovarian stimulation. However, whether ovarian tissue cryopreservation can ameliorate follicular damage and inhibit the production of reactive oxygen species in cryopreserved ovarian tissue remains unclear. Oxidative stress is caused by several factors, such as UV exposure, obesity, age, oxygen, and cryopreservation, which affect many of the physiological processes involved in reproduction, from maturation to fertilization, embryonic development, and pregnancy. Here, freezing and thawing solutions were pre-treated with N-acetylcysteine (NAC) and klotho protein upon the freezing of ovarian tissue. While both NAC and klotho protein suppressed DNA fragmentation by scavenging reactive oxygen species, NAC induced apoptosis and tissue damage in mouse ovarian tissue. Klotho protein inhibited NAC-induced apoptosis and restored cellular tissue damage, suggesting that klotho protein may be an effective antioxidant for the cryopreservation of ovarian tissue.
Collapse
Affiliation(s)
- Boram Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Korea; (B.K.); (T.K.)
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Tak Kim
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Korea; (B.K.); (T.K.)
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Seoul 02841, Korea; (B.K.); (T.K.)
- Correspondence:
| |
Collapse
|
4
|
Nakazawa N, Fukuda M, Ashizaki M, Shibata Y, Takahashi K. Hsp104 contributes to freeze-thaw tolerance by maintaining proteasomal activity in a spore clone isolated from Shirakami kodama yeast. J GEN APPL MICROBIOL 2021; 67:170-178. [PMID: 34148914 DOI: 10.2323/jgam.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The supply of oven-fresh bakery products to consumers has been improved by frozen dough technology; however, freeze-thaw stress decreases the activity of yeast cells. To breed better baker's yeasts for frozen dough, it is important to understand the factors affecting freeze-thaw stress tolerance in baker's yeast. We analyzed the stress response in IB1411, a spore clone from Saccharomyces cerevisiae Shirakami kodama yeast, with an exceptionally high tolerance to freeze-thaw stress. Genes encoding trehalose-6-phosphate synthase (TPS1), catalase (CTT1), and disaggregase (HSP104) were highly expressed in IB1411 cells even under conditions of non-stress. The expression of Hsp104 protein was also higher in IB1411 cells even under non-stress conditions. Deletion of HSP104 (hsp104Δ) in IB1411 cells reduced the activity of the ubiquitin-proteasome system (UPS). By monitoring the accumulation of aggregated proteins using the ΔssCPY*-GFP fusion protein under freeze-thaw stress or treatment with proteasomal inhibitor, we found that IB1411 cells resolved aggregated proteins faster than the hsp104Δ strain. Thus, Hsp104 seems to contribute to freeze-thaw tolerance by maintaining UPS activity via the disaggregation of aggregated proteins. Lastly, we found that the IB1411 cells maintained high leavening ability in frozen dough as compared with the parental strain, Shirakami kodama yeast, and thus will be useful for making bread.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Mami Fukuda
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Mizuki Ashizaki
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Yukari Shibata
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | | |
Collapse
|
5
|
The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39:BSR20191601. [PMID: 31371631 PMCID: PMC6712439 DOI: 10.1042/bsr20191601] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation has facilitated advancement of biological research by allowing the storage of cells over prolonged periods of time. While cryopreservation at extremely low temperatures would render cells metabolically inactive, cells suffer insults during the freezing and thawing process. Among such insults, the generation of supra-physiological levels of reactive oxygen species (ROS) could impair cellular functions and survival. Antioxidants are potential additives that were reported to partially or completely reverse freeze-thaw stress-associated impairments. This review aims to discuss the potential sources of cryopreservation-induced ROS and the effectiveness of antioxidant administration when used individually or in combination.
Collapse
|
6
|
Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:61-83. [PMID: 30911889 DOI: 10.1007/978-3-030-13035-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.
Collapse
|
7
|
Cheng C, Zhang M, Xue C, Bai F, Zhao X. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. J Biosci Bioeng 2016; 123:141-146. [PMID: 27576171 DOI: 10.1016/j.jbiosc.2016.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Budding yeast Saccharomyces cerevisiae is widely studied for the production of biofuels from lignocellulosic biomass. However, economic production is currently challenged by the repression of cell growth and compromised fermentation performance of S. cerevisiae strains in the presence of various environmental stresses, including toxic level of final products, inhibitory compounds released from the pretreatment of cellulosic feedstocks, high temperature, and so on. Therefore, it is important to improve stress tolerance of S. cerevisiae to these stressful conditions to achieve efficient and economic production. In this review, the latest advances on development of stress tolerant S. cerevisiae strains are summarized, with the emphasis on the impact of cell flocculation and zinc addition. It was found that cell flocculation affected ethanol tolerance and acetic acid tolerance of S. cerevisiae, and addition of zinc to a suitable level improved stress tolerance of yeast cells to ethanol, high temperature and acetic acid. Further studies on the underlying mechanisms by which cell flocculation and zinc status affect stress tolerance will not only enrich our knowledge on stress response and tolerance mechanisms of S. cerevisiae, but also provide novel metabolic engineering strategies to develop robust yeast strains for biofuels production.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Nasuno R, Aitoku M, Manago Y, Nishimura A, Sasano Y, Takagi H. Nitric oxide-mediated antioxidative mechanism in yeast through the activation of the transcription factor Mac1. PLoS One 2014; 9:e113788. [PMID: 25423296 PMCID: PMC4244153 DOI: 10.1371/journal.pone.0113788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae possesses various defense mechanisms against environmental stresses that generate reactive oxygen species, leading to growth inhibition or cell death. Our recent study showed a novel antioxidative mechanism mediated by nitric oxide (NO) in yeast cells, but the mechanism underlying the oxidative stress tolerance remained unclear. We report here one of the downstream pathways of NO involved in stress-tolerance mechanism in yeast. Our microarray and real-time quantitative PCR analyses revealed that exogenous NO treatment induced the expression of genes responsible for copper metabolism under the control of the transcription factor Mac1, including the CTR1 gene encoding high-affinity copper transporter. Our ChIP analysis also demonstrated that exogenous NO enhances the binding of Mac1 to the promoter region of target genes. Interestingly, we found that NO produced under high-temperature stress conditions increased the transcription level of the CTR1 gene. Furthermore, NO produced during exposure to high temperature also increased intracellular copper content, the activity of Cu,Zn-superoxide dismutase Sod1, and cell viability after exposure to high-temperature in a manner dependent on Mac1. NO did not affect the expression of the MAC1 gene, indicating that NO activates Mac1 through its post-translational modification. Based on the results shown here, we propose a novel NO-mediated antioxidative mechanism that Mac1 activated by NO induces the CTR1 gene, leading to an increase in cellular copper level, and then Cu(I) activates Sod1. This is the first report to unveil the mechanism of NO-dependent antioxidative system in yeast.
Collapse
Affiliation(s)
- Ryo Nasuno
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Miho Aitoku
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yuki Manago
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Nishimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yu Sasano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- * E-mail:
| |
Collapse
|
9
|
Leducq JB, Charron G, Samani P, Dubé AK, Sylvester K, James B, Almeida P, Sampaio JP, Hittinger CT, Bell G, Landry CR. Local climatic adaptation in a widespread microorganism. Proc Biol Sci 2014; 281:20132472. [PMID: 24403328 DOI: 10.1098/rspb.2013.2472] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.
Collapse
Affiliation(s)
- Jean-Baptiste Leducq
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, , 1030 avenue de la Médecine - Université Laval, Québec, Quebec, Canada , G1V 0A6, Department of Biology, McGill University, , 1205 ave Docteur Penfield, Montreal, Quebec, Canada , H3A 1B1, Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, , 425-G Henry Mall, 2434 Genetics/Biotechnology Center, Madison, WI 53706-1580, USA, Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, , Caparica 2829-516, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb Cell Fact 2012; 11:40. [PMID: 22462683 PMCID: PMC3359278 DOI: 10.1186/1475-2859-11-40] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/01/2012] [Indexed: 11/21/2022] Open
Abstract
Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains.
Collapse
Affiliation(s)
- Yu Sasano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Population size drives industrial Saccharomyces cerevisiae alcoholic fermentation and is under genetic control. Appl Environ Microbiol 2011; 77:2772-84. [PMID: 21357433 DOI: 10.1128/aem.02547-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alcoholic fermentation (AF) conducted by Saccharomyces cerevisiae has been exploited for millennia in three important human food processes: beer and wine production and bread leavening. Most of the efforts to understand and improve AF have been made separately for each process, with strains that are supposedly well adapted. In this work, we propose a first comparison of yeast AFs in three synthetic media mimicking the dough/wort/grape must found in baking, brewing, and wine making. The fermentative behaviors of nine food-processing strains were evaluated in these media, at the cellular, populational, and biotechnological levels. A large variation in the measured traits was observed, with medium effects usually being greater than the strain effects. The results suggest that human selection targeted the ability to complete fermentation for wine strains and trehalose content for beer strains. Apart from these features, the food origin of the strains did not significantly affect AF, suggesting that an improvement program for a specific food processing industry could exploit the variability of strains used in other industries. Glucose utilization was analyzed, revealing plastic but also genetic variation in fermentation products and indicating that artificial selection could be used to modify the production of glycerol, acetate, etc. The major result was that the overall maximum CO(2) production rate (V(max)) was not related to the maximum CO(2) production rate per cell. Instead, a highly significant correlation between V(max) and the maximum population size was observed in all three media, indicating that human selection targeted the efficiency of cellular reproduction rather than metabolic efficiency. This result opens the way to new strategies for yeast improvement.
Collapse
|
12
|
Tulha J, Lima A, Lucas C, Ferreira C. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given. Microb Cell Fact 2010; 9:82. [PMID: 21047428 PMCID: PMC2989305 DOI: 10.1186/1475-2859-9-82] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/03/2010] [Indexed: 01/03/2023] Open
Abstract
Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE) and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry.
Collapse
Affiliation(s)
- Joana Tulha
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Nakamura T, Ando A, Shima J. Gene Expression Profiles of Baker's Yeast under Baking-associated Stresses. J JPN SOC FOOD SCI 2010. [DOI: 10.3136/nskkk.57.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|