1
|
Hu J, Lv X, Niu X, Yu F, Zuo J, Bao Y, Yin H, Huang C, Nawaz S, Zhou W, Jiang W, Chen Z, Tu J, Qi K, Han X. Effect of nutritional and environmental conditions on biofilm formation of avian pathogenic Escherichia coli. J Appl Microbiol 2022; 132:4236-4251. [PMID: 35343028 DOI: 10.1111/jam.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
AIMS To study the effects of environmental stress and nutrient conditions on biofilm formation of avian pathogenic Escherichia coli (APEC). METHODS AND RESULTS The APEC strain DE17 was used to study biofilm formation under various conditions of environmental stress (including different temperatures, pH, metal ions, and antibiotics) and nutrient conditions (LB and M9 media, with the addition of different carbohydrates, if necessary). The DE17 biofilm formation ability was strongest at 25°C in LB medium. Compared to incubation at 37°C, three biofilm-related genes (csgD, dgcC, and pfs) were significantly upregulated and two genes (flhC and flhD) were downregulated at 25°C, which resulted in decreased motility. However, biofilm formation was strongest in M9 medium supplemented with glucose at 37°C, and the number of live bacteria was the highest as determined by confocal laser scanning microscopy (CLSM). The bacteria in the biofilm were surrounded by a thick extracellular matrix, and honeycomb-like or rough surfaces were observed by scanning electron microscopy (SEM). Moreover, biofilm formation of the DE17 strain was remarkably inhibited under acidic conditions, whereas neutral and alkaline conditions were more suitable for biofilm formation. Biofilm formation was also inhibited at specific concentrations of cations (Na+ , K+ , Ca2+ , and Mg2+ ) and antibiotics (ampicillin, chloramphenicol, kanamycin, and spectinomycin). The qRT-PCR showed that the transcription levels of biofilm-related genes change under different environmental conditions. CONCLUSIONS Nutritional and environmental factors played an important role in DE17 biofilm development. The transcription levels of biofilm-related genes changed under different environmental and nutrient conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The findings suggest that nutritional and environmental factors play an important role in APEC biofilm development. Depending on the different conditions involved in this study, it can serve as a guide to treating biofilm-related infections and to eliminating biofilms from the environment.
Collapse
Affiliation(s)
- Jiangang Hu
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China.,Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaolong Lv
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangpeng Niu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Fangheng Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China.,Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangan Han
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan, Fujian, China.,Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, China
| |
Collapse
|
2
|
Bielik B, Molnár L, Vrabec V, Andrášiová R, Maruščáková IC, Nemcová R, Toporčák J, Mudroňová D. Biofilm-forming lactic acid bacteria of honey bee origin intended for potential probiotic use. Acta Vet Hung 2021; 68:345-353. [PMID: 33496680 DOI: 10.1556/004.2020.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023]
Abstract
Scientists around the world are focusing their interest on the use of probiotics in honey bees as an alternative method of prophylaxis against causative agents of both American and European foulbrood. In our study we tested inhibitory activity against Paenibacillus larvae and the biofilm formation activity by various lactic acid bacteria isolated from honey bee guts or fresh pollen samples in the presence of different sugars added to the cultivation media. In addition, we tested the probiotic effect of a newly selected Apilactobacillus kunkeei V18 in an in situ experiment in bee colonies. We found antibacterial activity against P. larvae in four isolates. Biofilm formation activity of varying intensity was noted in six of the seven isolates in the presence of different sugars. The strongest biofilm formation (OD570 ≥ 1) was noted in A. kunkeei V18 in the presence of fructose; moreover, this isolate strongly inhibited the growth of P. larvae under laboratory conditions. Inhibition of P. larvae and Melissococcus plutonius by A. kunkeei V18 in situ was confirmed in a pilot study.
Collapse
Affiliation(s)
- Bohumil Bielik
- 1Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Ladislav Molnár
- 1Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Vladimír Vrabec
- 1Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Romana Andrášiová
- 2Department of Epizootiology and Parasitology, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Ivana Cingel'ová Maruščáková
- 3Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Radomíra Nemcová
- 3Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| | - Juraj Toporčák
- 1Clinic of Birds, Exotic and Free Living Animals, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Dagmar Mudroňová
- 3Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81, Košice, Slovak Republic
| |
Collapse
|
3
|
Genetic and physiological effects of subinhibitory concentrations of oral antimicrobial agents on Streptococcus mutans biofilms. Microb Pathog 2020; 150:104669. [PMID: 33278519 DOI: 10.1016/j.micpath.2020.104669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/01/2020] [Accepted: 11/26/2020] [Indexed: 11/22/2022]
Abstract
Streptococcus mutans is the main etiological agent of dental caries because of its capacity to adhere to enamel structure and form biofilms. This study aimed to evaluate the effects of the anticariogenic agents - sodium fluoride (NaF) and chlorhexidine (CHX) - at levels below minimum inhibitory concentrations (sub-MICs) on the growth of planktonic cells and biofilms and on the expression of vicR and covR genes associated with the regulation of biofilm formation. MICs and minimum bactericidal concentrations (MBCs) of NaF and CHX were determined for S. mutans strains ATCC25175, UA159 and 3VF2. Growth curves were constructed for planktonic cells cultured in brain heart infusion (BHI) broth supplemented with NaF (0.125-0.75MIC) or CHX (0.25-0.75MIC). Biofilm formation assays were performed in microplates containing CHX or NaF at 0.5-1.0MIC and stained with violet crystal. Quantitative polymerase chain reaction determined the alterations in covR and vicR expression in cells exposed to antimicrobials at sub-MIC levels. NaF and CHX at sub-MIC levels affected the growth of planktonic cells of all three S. mutans strains, depending on the concentration tested. The biofilm formation in UA159 and 3VF2 was reduced by NaF at concentrations ≥0.5 MIC, while that of ATCC 25175 was reduced significantly irrespective of dose. In contrast, UA159 and 3VF2 biofilms were not affected by CHX at these levels, whereas those of ATCC 25175 were reduced significantly at all concentrations tested. Under sub-MIC conditions, CHX and (to a lesser degree) NaF increased vicR and covR expression in all three strains, although there were large differences between strains and treatment conditions employed. CHX and NaF at sub-MIC levels influence on the growth of S. mutans in planktonic and biofilm conditions and on transcript levels of biofilm-associated genes vicR and covR, in a dose-dependent manner.
Collapse
|
4
|
Qian H, Li W, Guo L, Tan L, Liu H, Wang J, Pan Y, Zhao Y. Stress Response of Vibrio parahaemolyticus and Listeria monocytogenes Biofilms to Different Modified Atmospheres. Front Microbiol 2020; 11:23. [PMID: 32153513 PMCID: PMC7044124 DOI: 10.3389/fmicb.2020.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
The sessile biofilms of Vibrio parahaemolyticus and Listeria monocytogenes have increasingly become a critical threat in seafood safety. This study aimed to evaluate the effects of modified atmospheres on the formation ability of V. parahaemolyticus and L. monocytogenes biofilms. The stress responses of bacterial biofilm formation to modified atmospheres including anaerobiosis (20% carbon dioxide, 80% nitrogen), micro-aerobiosis (20% oxygen, 80% nitrogen), and aerobiosis (60% oxygen, 40% nitrogen) were illuminated by determining the live cells, chemical composition analysis, textural parameter changes, expression of regulatory genes, etc. Results showed that the biofilm formation ability of V. parahaemolyticus was efficiently decreased, supported by the fact that the modified atmospheres significantly reduced the key chemical composition [extracellular DNA (eDNA) and extracellular proteins] of the extracellular polymeric substance (EPS) and negatively altered the textural parameters (biovolume, thickness, and bio-roughness) of biofilms during the physiological conversion from anaerobiosis to aerobiosis, while the modified atmosphere treatment increased the key chemical composition of EPS and the textural parameters of L. monocytogenes biofilms from anaerobiosis to aerobiosis. Meanwhile, the expression of biofilm formation genes (luxS, aphA, mshA, oxyR, and opaR), EPS production genes (cpsA, cpsC, and cpsR), and virulence genes (vopS, vopD1, vcrD1, vopP2β, and vcrD2β) of V. parahaemolyticus was downregulated. For the L. monocytogenes cells, the expression of biofilm formation genes (flgA, flgU, and degU), EPS production genes (Imo2554, Imo2504, inlA, rmlB), and virulence genes (vopS, vopD1, vcrD1, vopP2β, and vcrD2β) was upregulated during the physiological conversion. All these results indicated that the modified atmospheres possessed significantly different regulation on the biofilm formation of Gram-negative V. parahaemolyticus and Gram-positive L. monocytogenes, which will provide a novel insight to unlock the efficient control of Gram-negative and Gram-positive bacteria in modified-atmosphere packaged food.
Collapse
Affiliation(s)
- Hui Qian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wei Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linxia Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ling Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China.,Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
5
|
Anti-Biofilm Effects of Synthetic Antimicrobial Peptides Against Drug-Resistant Pseudomonas aeruginosa and Staphylococcus aureus Planktonic Cells and Biofilm. Molecules 2019; 24:molecules24244560. [PMID: 31842508 PMCID: PMC6943720 DOI: 10.3390/molecules24244560] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023] Open
Abstract
Biofilm-associated infections are difficult to manage or treat as biofilms or biofilm-embedded bacteria are difficult to eradicate. Antimicrobial peptides have gained increasing attention as a possible alternative to conventional drugs to combat drug-resistant microorganisms because they inhibit the growth of planktonic bacteria by disrupting the cytoplasmic membrane. The current study investigated the effects of synthetic peptides (PS1-2, PS1-5, and PS1-6) and conventional antibiotics on the growth, biofilm formation, and biofilm reduction of drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus. The effects of PS1-2, PS1-5, and PS1-6 were also tested in vivo using a mouse model. All peptides inhibited planktonic cell growth and biofilm formation in a dose-dependent manner. They also reduced preformed biofilm masses by removing the carbohydrates, extracellular DNA, and lipids that comprised extracellular polymeric substances (EPSs) but did not affect proteins. In vivo, PS1-2 showed the greatest efficacy against preformed biofilms with no cytotoxicity. Our findings indicate that the PS1-2 peptide has potential as a next-generation therapeutic drug to overcome multidrug resistance and to regulate inflammatory response in biofilm-associated infections.
Collapse
|
6
|
Lopes LQS, de Almeida Vaucher R, Giongo JL, Gündel A, Santos RCV. Characterisation and anti-biofilm activity of glycerol monolaurate nanocapsules against Pseudomonas aeruginosa. Microb Pathog 2019; 130:178-185. [PMID: 30862561 DOI: 10.1016/j.micpath.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Pseudomonas aeruginosa is a ubiquitous microorganism that commonly causes hospital-acquired infections, including pneumonia, bloodstream and urinary tract infections and it is well known for chronically colonising the respiratory tract of patients with cystic fibrosis, causing severe intermittent exacerbation of the condition. P. aeruginosa may appear in the free form cell but also grows in biofilm communities adhered to a surface. An alternative to conventional antimicrobial agents are nanoparticles that can act as carriers for antibiotics and other drugs. In this context, the study aimed to characterise and verify the anti-biofilm potential of GML Nanocapsules against P. aeruginosa. The nanocapsules showed a mean diameter of 190.7 nm, polydispersion index of 0.069, the zeta potential of -23.3 mV. The microdilution test showed a MIC of 62.5 μg/mL to GML and 15.62 μg/mL to GML Nanocapsules. The anti-biofilm experiments demonstrated the significant reduction of biomass, proteins, polysaccharide and viable P. aeruginosa in biofilm treated with GML Nanocapsules while the free GML did not cause an effect. The AFM images showed a decrease in a biofilm which received GML. The positive results suggest an alternative for the public health trouble related to infections associated with biofilm.
Collapse
Affiliation(s)
- Leonardo Quintana Soares Lopes
- Post Graduate Program in Nanosciences, Universidade Franciscana, Santa Maria, Brazil; Microbiology and Parasitology Department, Health Sciences Center, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Rodrigo de Almeida Vaucher
- Laboratory of Research in Biochemistry and Molecular Biology of Microorganisms, Post Graduate Program in Biochemistry and Bioprospecting, Universidade Federal de Pelotas, Capão Do Leão, Brazil
| | | | | | - Roberto Christ Vianna Santos
- Post Graduate Program in Nanosciences, Universidade Franciscana, Santa Maria, Brazil; Microbiology and Parasitology Department, Health Sciences Center, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Kim M, Jeon J, Kim J. Streptococcus mutans extracellular DNA levels depend on the number of bacteria in a biofilm. Sci Rep 2018; 8:13313. [PMID: 30190485 PMCID: PMC6127218 DOI: 10.1038/s41598-018-31275-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans is a component of oral plaque biofilm that accumulates on the surface of teeth. The biofilm consists of extracellular components including extracellular DNA (eDNA). This study was conducted to investigate the factors that may affect the eDNA levels of S. mutans in biofilms. For the study, S. mutans UA159 biofilms were formed for 52 h on hydroxyapatite (HA) discs in 0% (w/v) sucrose +0% glucose, 0.5% sucrose, 1% sucrose, 0.5% glucose, 1% glucose, or 0.5% sucrose +0.5% glucose. Acidogenicity of S. mutans in the biofilms was measured after biofilm formation (22 h) up to 52 h. eDNA was collected after 52 h biofilm formation and measured using DNA binding fluorescent dye, SYBR Green I. Biofilms cultured in 0.5% sucrose or glucose had more eDNA and colony forming units (CFUs) and less exopolysaccharides (EPSs) than the biofilms cultured in 1% sucrose or glucose at 52 h, respectively. The biofilms formed in 0% sucrose +0% glucose maintained pH around 7, while the biofilms grown in 0.5% sucrose had more acidogenicity than those grown in 1% sucrose, and the same pattern was shown in glucose. In conclusion, the results of this study show that the number of S. mutans in biofilms affects the concentrations of eDNA as well as the acidogenicity of S. mutans in the biofilms. In addition, the thickness of EPS is irrelevant to eDNA aggregation within biofilms.
Collapse
Affiliation(s)
- Miah Kim
- Department of Conservative Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea
| | - Jaegyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea
| | - Jaegon Kim
- Department of Pediatric Dentistry, School of Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea.
| |
Collapse
|
8
|
Elshikh M, Moya-Ramírez I, Moens H, Roelants S, Soetaert W, Marchant R, Banat IM. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J Appl Microbiol 2017; 123:1111-1123. [PMID: 28766815 DOI: 10.1111/jam.13550] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 11/30/2022]
Abstract
AIMS To assess the efficacy of rhamnolipid (mixture of monorhamnolipid and dirhamnolipid congeners), purified monorhamnolipid, dirhamnolipid and lactonic sophorolipid biosurfactants against pathogens important for oral hygiene. METHODS AND RESULTS Acquired and produced biosurfactants were fully characterized to allow the antimicrobial activity to be assigned to the biosurfactant congeners. Antimicrobial activity was assessed using the resazurin-aided microdilution method. Mixed rhamnolipid JBR425 (MR) and lactonic sophorolipids (LSLs) demonstrated the lowest minimum inhibitory concentration (MIC) which ranged between 100 and 400 μg ml-1 against Streptococcus mutans, Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis. Combining these biosurfactants with standard antimicrobial agents namely chlorhexidine, sodium lauryl sulphate, tetracycline HCl and ciprofloxacin showed a dramatic drop in the MIC values. In addition, in vitro studies demonstrated the biosurfactants' ability to prevent and disrupt oral pathogens biofilms. The increased permeability of microorganisms treated with biosurfactant, as shown using bisbenzimide dye, in part explains the inhibition effect. CONCLUSION The results demonstrate that rhamnolipids and LSLs have the ability to inhibit oral pathogens both in planktonic and oral biofilm states. SIGNIFICANCE AND IMPACT OF THE STUDY The findings indicate the potential value of biosurfactants for both oral hygiene and the pharmaceutical industries since there is a serious need to reduce the reliance on synthetic antimicrobials and antibiotics.
Collapse
Affiliation(s)
- M Elshikh
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - I Moya-Ramírez
- Chemical Engineering Department, Faculty of Sciences, University of Granada, Granada, Spain
| | - H Moens
- Bio Base Europe Pilot Plant, Gent, Belgium
| | - S Roelants
- Bio Base Europe Pilot Plant, Gent, Belgium.,Laboratory for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - W Soetaert
- Bio Base Europe Pilot Plant, Gent, Belgium.,Laboratory for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - R Marchant
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - I M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
9
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
10
|
Parkar SG, Eady S, Cabecinha M, Skinner MA. Consumption of apple-boysenberry beverage decreases salivary Actinomyces naeslundii and their adhesion in a multi-species biofilm model. Benef Microbes 2017; 8:299-307. [PMID: 28403648 DOI: 10.3920/bm2016.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We hypothesised that consumption of beverage rich in both fibre and polyphenols, rather than each bioactive alone, will modulate populations of selected salivary bacteria, and their adhesion characteristics and that some of these effects may be due to the anti-microbial activity of the beverage bioactives. We investigated the effect of 4 weeks' consumption of beverages, rich in apple fibre, boysenberry polyphenols, or both on salivary bacteria in healthy subjects. In this placebo-controlled crossover study, saliva samples were collected at the beginning and end of each treatment period, and used for qPCR quantitation of Lactobacillus spp., Actinomyces naeslundii and Streptococcus mutans. The counts of salivary A. naeslundii decreased after the consumption of the apple-boysenberry beverage (P<0.05, Student's t-test). We also examined the effect of the subjects' saliva on bacterial adhesion using a mixed species biofilm model. The salivary pellicles prepared before and after each treatment were inoculated with laboratory strains of A. naeslundii, Lactobacillus rhamnosus and S. mutans and tested for biofilm formation. The post appleboysenberry beverage salivary pellicle significantly decreased the adhesion of A. naeslundii at the end of both 3 and 24 h, in the in vitro biofilm. A 1/16 dilution of the apple-boysenberry beverage itself decreased the proliferation of test strains of A. naeslundii and S. mutans by 51 and 55%, respectively (P<0.005), indicating the antimicrobial activity of its bioactives. This study demonstrated that consumption of apple-boysenberry beverage, rather than apple or the boysenberry beverage alone or the placebo, decreased salivary A. naeslundii and their adhesion under laboratory conditions. These changes are factors that influence oral microecology and potentially oral health.
Collapse
Affiliation(s)
- S G Parkar
- 1 The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North 4442, New Zealand
| | - S Eady
- 2 The New Zealand Institute for Plant and Food Research Limited, Canterbury Agricultural Science Centre, Private Bag 4704, Christchurch 8140, New Zealand
| | - M Cabecinha
- 1 The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 11600, Palmerston North 4442, New Zealand
| | - M A Skinner
- 3 The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N Biotechnol 2017; 36:26-36. [PMID: 28065676 DOI: 10.1016/j.nbt.2016.12.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
Abstract
Biosurfactants are naturally occurring surface active compounds that have mainly been exploited for environmental applications and consumer products, with their biomedical efficacy an emerging area of research. Rhamnolipids area major group of biosurfactants that have been reported for their antimicrobial and antibiofilm efficacy. One of the main limiting factors for scaled up production and downstream applications of rhamnolipids is the fact that they are predominantly produced from the opportunistic pathogen Pseudomonas aeruginosa. In this article, we have reported the production and characterisation of long chain rhamnolipids from non-pathogenic Burkholderia thailandensis E264 (ATCC 700388). We have also investigated the antibacterial and antibiofilm properties of these rhamnolipids against some oral pathogens (Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis), important for oral health and hygiene. Treating these bacteria with different concentrations of long chain rhamnolipids resulted in a reduction of 3-4 log of bacterial viability, placing these rhamnolipids close to being classified as biocidal. Investigating long chain rhamnolipid efficacy as antibiofilm agents for prospective oral-related applications revealed good potency against oral-bacteria biofilms in a co-incubation experiments, in a pre-coated surface format, in disrupting immature biofilms and has shown excellent combination effect with Lauryl Sodium Sulphate which resulted in a drastic decrease in its minimal inhibitory concentration against different bacteria. Investigating the rhamnolipid permeabilization effect along with their ability to induce the formation of reactive oxygen species has shed light on the mechanism through which inhibition/killing of bacteria may occur.
Collapse
Affiliation(s)
- Mohamed Elshikh
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA Northern Ireland, UK.
| | - Scott Funston
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA Northern Ireland, UK.
| | - Alif Chebbi
- Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisie.
| | - Syed Ahmed
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA Northern Ireland, UK.
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA Northern Ireland, UK.
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA Northern Ireland, UK.
| |
Collapse
|
12
|
Khangholi M, Jamalli A. The Effects of Sugars on the Biofilm Formation of Escherichia coli 185p on Stainless Steel and Polyethylene Terephthalate Surfaces in a Laboratory Model. Jundishapur J Microbiol 2016; 9:e40137. [PMID: 27800149 PMCID: PMC5086029 DOI: 10.5812/jjm.40137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/13/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Bacteria utilize various methods in order to live in protection from adverse environmental conditions. One such method involves biofilm formation; however, this formation is dependent on many factors. The type and concentration of substances such as sugars that are present in an environment can be effective facilitators of biofilm formation. METHODS First, the physico-chemical properties of the bacteria and the target surface were studied via the MATS and contact angle measurement methods. Additionally, adhesion to different surfaces in the presence of various concentrations of sugars was compared in order to evaluate the effect of these factors on the biofilm formation of Escherichia coli, which represents a major food contaminant. RESULTS Results showed that the presence of sugars has no effect on the bacterial growth rate; all three concentrations of sugars were hydrophilic and demonstrated a high affinity toward binding to the surfaces. CONCLUSIONS The impact of sugars and other factors on biofilm formation can vary depending on the type of bacteria present.
Collapse
Affiliation(s)
| | - Ailar Jamalli
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, IR Iran
| |
Collapse
|
13
|
Lu H, Xue Z, Saikaly P, Nunes SP, Bluver TR, Liu WT. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination. WATER RESEARCH 2016; 88:337-345. [PMID: 26512812 DOI: 10.1016/j.watres.2015.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/24/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.
Collapse
Affiliation(s)
- Huijie Lu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zheng Xue
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pascal Saikaly
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suzana P Nunes
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ted R Bluver
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
14
|
Amine Ben Mlouka M, Cousseau T, Di Martino P. Application of fluorescently labelled lectins for the study of polysaccharides in biofilms with a focus on biofouling of nanofiltration membranes. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.3.338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Douterelo I, Boxall JB, Deines P, Sekar R, Fish KE, Biggs CA. Methodological approaches for studying the microbial ecology of drinking water distribution systems. WATER RESEARCH 2014; 65:134-156. [PMID: 25105587 DOI: 10.1016/j.watres.2014.07.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/08/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.
Collapse
Affiliation(s)
- Isabel Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK.
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Peter Deines
- Institute of Natural and Mathematical Sciences, Massey University, New Zealand
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, China
| | - Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Catherine A Biggs
- Department of Chemical and Biological Engineering, The University of Sheffield, UK
| |
Collapse
|
16
|
Abstract
A dental wax was evaluated after unilateral application in 20 client-owned, mixed and purebred small dogs using a clean, split-mouth study model. All dogs had clinical signs of periodontal disease including plaque, calculus, and/or gingivitis. The wax was randomly applied to the teeth of one side of the mouth daily for 30-days while the contralateral side received no treatment. Owner parameters evaluated included compliance and a subjective assessment of ease of wax application. Gingivitis, plaque and calculus accumulation were scored at the end of the study period. Owners considered the wax easy to apply in all dogs. Compliance with no missed application days was achieved in 8 dogs. The number of missed application days had no effect on wax efficacy. There was no significant difference in gingivitis or plaque accumulation scores when comparing treated and untreated sides. Calculus accumulation scores were significantly less (22.1 %) for teeth receiving the dental wax.
Collapse
|
17
|
Fteita D, Könönen E, Söderling E, Gürsoy UK. Effect of estradiol on planktonic growth, coaggregation, and biofilm formation of the Prevotella intermedia group bacteria. Anaerobe 2014; 27:7-13. [DOI: 10.1016/j.anaerobe.2014.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
18
|
Xue Z, Lu H, Liu WT. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community. BIOFOULING 2014; 30:813-821. [PMID: 25115516 DOI: 10.1080/08927014.2014.935937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.
Collapse
Affiliation(s)
- Zheng Xue
- a Department of Civil and Environmental Engineering , University of Illinois at Urbana Champaign , Urbana , IL
| | | | | |
Collapse
|
19
|
Khajotia SS, Smart KH, Pilula M, Thompson DM. Concurrent quantification of cellular and extracellular components of biofilms. J Vis Exp 2013:e50639. [PMID: 24378651 DOI: 10.3791/50639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
UNLABELLED Confocal laser scanning microscopy (CLSM) is a powerful tool for investigation of biofilms. Very few investigations have successfully quantified concurrent distribution of more than two components within biofilms because: 1) selection of fluorescent dyes having minimal spectral overlap is complicated, and 2) quantification of multiple fluorochromes poses a multifactorial problem. OBJECTIVES Report a methodology to quantify and compare concurrent 3-dimensional distributions of three cellular/extracellular components of biofilms grown on relevant substrates. METHODS The method consists of distinct, interconnected steps involving biofilm growth, staining, CLSM imaging, biofilm structural analysis and visualization, and statistical analysis of structural parameters. Biofilms of Streptococcus mutans (strain UA159) were grown for 48 hr on sterile specimens of Point 4 and TPH(3) resin composites. Specimens were subsequently immersed for 60 sec in either Biotène PBF (BIO) or Listerine Total Care (LTO) mouthwashes, or water (control group; n=5/group). Biofilms were stained with fluorochromes for extracellular polymeric substances, proteins and nucleic acids before imaging with CLSM. Biofilm structural parameters calculated using ISA3D image analysis software were biovolume and mean biofilm thickness. Mixed models statistical analyses compared structural parameters between mouthwash and control groups (SAS software; α=0.05). Volocity software permitted visualization of 3D distributions of overlaid biofilm components (fluorochromes). RESULTS Mouthwash BIO produced biofilm structures that differed significantly from the control (p<0.05) on both resin composites, whereas LTO did not produce differences (p>0.05) on either product. CONCLUSIONS This methodology efficiently and successfully quantified and compared concurrent 3D distributions of three major components within S. mutans biofilms on relevant substrates, thus overcoming two challenges to simultaneous assessment of biofilm components. This method can also be used to determine the efficacy of antibacterial/antifouling agents against multiple biofilm components, as shown using mouthwashes. Furthermore, this method has broad application because it facilitates comparison of 3D structures/architecture of biofilms in a variety of disciplines.
Collapse
Affiliation(s)
- Sharukh S Khajotia
- Department of Dental Materials, College of Dentistry, University of Oklahoma Health Sciences Center
| | | | | | | |
Collapse
|
20
|
Shopova I, Bruns S, Thywissen A, Kniemeyer O, Brakhage AA, Hillmann F. Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Front Microbiol 2013; 4:141. [PMID: 23760756 PMCID: PMC3674311 DOI: 10.3389/fmicb.2013.00141] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/17/2013] [Indexed: 11/30/2022] Open
Abstract
The environmentally acquired fungal pathogen Aspergillus fumigatus causes a variety of severe diseases. Furthermore, it is often found colonizing the respiratory tract of patients suffering from cystic fibrosis. Conidia of this filamentous fungus adhere to substrate surfaces and germinate to form biofilms comprised of dense hyphal networks embedded in an adhesive extracellular matrix (ECM), built predominantly of polysaccharides. These fungal microconsortia are likely to be of clinical relevance, as they have also been observed during growth in the host and they confer drastically reduced susceptibility to antifungals. Little is known about environmental factors or signals contributing to the formation and structural organization of this polysaccharide matrix. Extracellular DNA (eDNA) is an abundant molecule in the mucus-rich surfaces in the lungs of cystic fibrosis patients. Here, we studied its influence on the biofilm establishment and progression of A. fumigatus. Using an in vitro biofilm model eDNA was identified as an efficient biofilm inducer promoting conidial surface adhesion and polysaccharide ECM production. Confocal laser scanning microscopy revealed entirely different ECM architectures depending on the substrates used for biofilm induction. In the presence of serum, adhesive polysaccharides were mainly localized to the hyphal tips appearing as cohesive threads or “halo” areas agglutinating the hyphae. Exogenous DNA altered the structural organization of the biofilm specifically by colocalizing to a grid-like bottom layer of ECM. These results indicate that biofilm formation in A. fumigatus is shaped by certain substrates and in response to host environmental signals.
Collapse
Affiliation(s)
- Iordana Shopova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hess DJ, Henry-Stanley MJ, Lusczek ER, Beilman GJ, Wells CL. Anoxia inhibits biofilm development and modulates antibiotic activity. J Surg Res 2013; 184:488-94. [PMID: 23746961 DOI: 10.1016/j.jss.2013.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. MATERIALS AND METHODS To mimic catheter-associated biofilms, silastic coupons were inoculated with 10(7)S aureus and incubated either aerobically (∼21% O2) or anaerobically (10% CO2, 5% H2, 85% N2) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. RESULTS Control biofilms (no antibiotic) cultivated aerobically contained 8.1-8.6 log10S aureus. Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass (P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. CONCLUSIONS Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.
Collapse
Affiliation(s)
- Donavon J Hess
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455-0374, USA.
| | | | | | | | | |
Collapse
|
22
|
Plonka K, Pukallus M, Barnett A, Holcombe T, Walsh L, Seow W. A Longitudinal Case-Control Study of Caries Development from Birth to 36 Months. Caries Res 2013. [DOI: 10.1159/000345073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Quilès F, Polyakov P, Humbert F, Francius G. Production of extracellular glycogen by Pseudomonas fluorescens: spectroscopic evidence and conformational analysis by biomolecular recognition. Biomacromolecules 2012; 13:2118-27. [PMID: 22686500 DOI: 10.1021/bm300497c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glycogen is mainly found as the principal storage form of glucose in cells. Many bacteria are able to synthesize large amounts of glycogen under unfavorable life conditions. By combining infrared spectroscopy, single molecule force spectroscopy (SMFS) and immuno-staining technique, we evidenced that planktonic P. fluorescens (Pf) cells are also able to produce glycogen as an extracellular polymeric substance. For this purpose, Pf suspensions were examined at 3 and 21 h of growth in nutritive medium (LB, 0.5 g/L). The conformation of the extracellular glycogen, revealed through its infrared spectral signature, has been investigated by SMFS measurements using Freely Jointed Chain model. The analysis of force versus distance curves showed over growth time that the increase of glycogen production was accompanied by an increase in glycogen contour lengths and ramifications. These results demonstrated that the production of extracellular bacterial glycogen can occur even if the cells are not subjected to unfavorable life conditions.
Collapse
Affiliation(s)
- Fabienne Quilès
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, France.
| | | | | | | |
Collapse
|
24
|
Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 2011; 55:3338-44. [PMID: 21537022 DOI: 10.1128/aac.00206-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The penetration and overall efficacy of six mouthrinse actives was evaluated by using an in vitro flow cell oral biofilm model. The technique involved preloading biofilm cells with a green fluorescent dye that leaked out as the cells were permeabilized by a treatment. The loss of green color, and of biomass, was observed by time-lapse microscopy during 60 min of treatment under continuous flow conditions. The six actives analyzed were ethanol, sodium lauryl sulfate, triclosan, chlorhexidine digluconate (CHX), cetylpyridinium chloride, and nisin. Each of these agents effected loss of green fluorescence throughout biofilm cell clusters, with faster action at the edge of a cell cluster and slower action in the cluster center. The time to reach half of the initial fluorescent intensity at the center of a cell cluster, which can be viewed as a combined penetration and biological action time, ranged from 0.6 to 19 min for the various agents. These times are much longer than the predicted penetration time based on diffusion alone, suggesting that anti-biofilm action was controlled more by the biological action time than by the penetration time of the active. None of the agents tested caused any removal of the biofilm. The extent of fluorescence loss after 1 h of exposure to an active ranged from 87 to 99.5%, with CHX being the most effective. The extent of fluorescence loss in vitro, but not penetration and action time, correlated well with the relative efficacy data from published clinical trials.
Collapse
|
25
|
Ashby MT, Kreth J, Soundarajan M, Sivuilu LS. Influence of a model human defensive peroxidase system on oral streptococcal antagonism. MICROBIOLOGY-SGM 2009; 155:3691-3700. [PMID: 19684069 DOI: 10.1099/mic.0.031310-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus is a dominant genus in the human oral cavity, making up about 20 % of the more than 800 species of bacteria that have been identified, and about 80 % of the early biofilm colonizers. Oral streptococci include both health-compatible (e.g. Streptococcus gordonii and Streptococcus sanguinis) and pathogenic strains (e.g. the cariogenic Streptococcus mutans). Because the streptococci have similar metabolic requirements, they have developed defence strategies that lead to antagonism (also known as bacterial interference). S. mutans expresses bacteriocins that are cytotoxic toward S. gordonii and S. sanguinis, whereas S. gordonii and S. sanguinis differentially produce H(2)O(2) (under aerobic growth conditions), which is relatively toxic toward S. mutans. Superimposed on the inter-bacterial combat are the effects of the host defensive mechanisms. We report here on the multifarious effects of bovine lactoperoxidase (bLPO) on the antagonism between S. gordonii and S. sanguinis versus S. mutans. Some of the effects are apparently counterproductive with respect to maintaining a health-compatible population of streptococci. For example, the bLPO system (comprised of bLPO+SCN(-)+H(2)O(2)) destroys H(2)O(2), thereby abolishing the ability of S. gordonii and S. sanguinis to inhibit the growth of S. mutans. Furthermore, bLPO protein (with or without its substrate) inhibits bacterial growth in a biofilm assay, but sucrose negates the inhibitory effects of the bLPO protein, thereby facilitating adherence of S. mutans in lieu of S. gordonii and S. sanguinis. Our findings may be relevant to environmental pressures that select early supragingival colonizers.
Collapse
Affiliation(s)
- Michael T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Muthu Soundarajan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Laure Sita Sivuilu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
26
|
Transcriptional and translational analysis of biofilm determinants of Aggregatibacter actinomycetemcomitans in response to environmental perturbation. Infect Immun 2009; 77:2896-907. [PMID: 19433550 DOI: 10.1128/iai.00126-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fimbriae, lipopolysaccharide (LPS), and extracellular polymeric substance (EPS) all contribute to biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans. To understand how individual biofilm determinants respond to changing environmental conditions, the transcription of genes responsible for fimbria, LPS, and EPS production, as well as the translation of these components, was determined in rough (Rv) and isogenic smooth (Sv) variants of A. actinomycetemcomitans cultured in half-strength and full-strength culture medium under anaerobic or aerobic conditions, and in iron-supplemented and iron-chelated medium. The transcription of tadV (fimbrial assembly), pgaC (extracellular polysaccharide synthesis), and orf8 or rmlB (lipopolysaccharide synthesis) was measured by real-time PCR. The amounts of fimbriae, LPS, and EPS were also estimated from stained sodium dodecyl sulfate-polyacrylamide gels and verified by Western blotting and enzyme-linked immunoadsorbent assay using specific antibodies. Each gene was significantly upregulated in the Rv compared to in the Sv. The transcription of fimbrial, LPS, and EPS genes in the Rv was increased approximately twofold in cells cultured in full-strength medium under anaerobic conditions compared to that in cells cultured under aerobic conditions. Under anaerobic conditions, the transcription of fimbrial and EPS enzymes was elevated in both Rv and Sv cells cultured in half-strength medium, compared to that in full-strength medium. Iron chelation also increased the transcription and translation of all biofilm determinants compared to their expression with iron supplementation, yet the quantity of biofilm was not significantly changed by any environmental perturbation except iron limitation. Thus, anaerobic conditions, nutrient stress, and iron limitation each upregulate known biofilm determinants of A. actinomycetemcomitans to contribute to biofilm formation.
Collapse
|
27
|
Production of a potentially novel antimicrobial compound by a biofilm-forming marine Streptomyces sp. in a niche-mimic rotating disk bioreactor. Bioprocess Biosyst Eng 2009; 33:207-17. [PMID: 19326149 DOI: 10.1007/s00449-009-0314-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 03/10/2009] [Indexed: 10/21/2022]
Abstract
After initial small-scale experiments, a 25.0 l rotating disk bioreactor (RDBR) was investigated for the cultivation of a biofilm-forming salt-tolerant Streptomyces sp. MS1/7, producing an antimicrobial compound. Peak activity attainment rate, PAAR (ratio of the peak antimicrobial activity, PAMA and the time taken to attain PAMA) was determined. Of the three pH values examined (8.0, 9.0 and 10.0) maximum PAAR (1.82 mm/h) was attained at pH 9.0. Three aeration rates (9.0, 6.0 and 3.0 l/min) were considered at three levels (25, 50 and 75%) of disk submergence. At the highest aeration rate and 50% submergence level, PAMA (41 mm), PAAR (1.86 mm/h) and biofilm density (BD, 0.91 g/ml) attained their highest values. At any given aeration rate, PAMA was always higher at 50% submergence level. This supports our earlier premise that ideal intertidal conditions, 12 h periods of immersion and emersion, promote maximum BD and antimicrobial production in the niche-mimic RDBR.
Collapse
|
28
|
Dongari-Bagtzoglou A. Pathogenesis of mucosal biofilm infections: challenges and progress. Expert Rev Anti Infect Ther 2008; 6:201-8. [PMID: 18380602 DOI: 10.1586/14787210.6.2.201] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Living-tissue biofilms remained unrecognized until very recently, mainly as a result of traditional microbial sampling techniques or histologic processing, which disrupt the spatial organization of the tissue microorganisms. Thus, the biofilm nature of certain mucosal infections was frequently unintentionally missed or disregarded. To a large extent, the study of human tissue biofilms is still in its infancy. However, with the advent of newer methodologies, such as fluorescent in situ hybridization and endoscopic confocal laser scanning microscopy, which combine the identification of microbes with in situ, direct visualization of their relationships with each other and with their substratum, mucosal tissue biofilms are becoming easier to study and, thus, their role in human infections is becoming more apparent. This review summarizes the challenges in the study of tissue biofilms, proposes two inflammation-centered - albeit opposite - pathogenetic models of mucosal tissue biofilm infections and suggests directions for future research and novel therapeutic approaches.
Collapse
Affiliation(s)
- Anna Dongari-Bagtzoglou
- Department of Oral Health Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
29
|
Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 2008; 74:1869-75. [PMID: 18223108 DOI: 10.1128/aem.02218-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A microscopic method for noninvasively visualizing the action of an antimicrobial agent inside a biofilm was developed and applied to describe spatial and temporal patterns of mouthrinse activity on model oral biofilms. Three species biofilms of Streptococcus oralis, Streptococcus gordonii, and Actinomyces naeslundii were grown in glass capillary flow cells. Bacterial cells were stained with the fluorogenic esterase substrate Calcien AM (CAM). Loss of green fluorescence upon exposure to an antimicrobial formulation was subsequently imaged by time-lapse confocal laser scanning microscopy. When an antimicrobial mouthrinse containing chlorhexidine digluconate was administered, a gradual loss of green fluorescence was observed that began at the periphery of cell clusters where they adjoined the flowing bulk fluid and progressed inward over a time period of several minutes. Image analysis was performed to quantify a penetration velocity of 4 mum/min. An enzyme-based antimicrobial formulation led to a gradual, continually slowing loss of fluorescence in a pattern that was qualitatively different from the behavior observed with chlorhexidine. Ethanol at 11.6% had little effect on the biofilm. None of these treatments resulted in the removal of biomass from the biofilm. Most methods to measure or visualize antimicrobial action in biofilms are destructive. Spatial information is important because biofilms are known for their structural and physiological heterogeneity. The CAM staining technique has the potential to provide information about the rate of antimicrobial penetration, the presence of tolerant subpopulations, and the extent of biomass removal effected by a treatment.
Collapse
|