1
|
Wang M, Wei ZW, Ryan KS. A heme-dependent enzyme forms the hydrazine in the antibiotic negamycin. Nat Chem Biol 2025:10.1038/s41589-025-01898-0. [PMID: 40312596 DOI: 10.1038/s41589-025-01898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Negamycin, a hydrazine-containing dipeptide-like antibiotic, was first isolated in 1970 from three strains of Streptomyces purpeofuscus. Its pronounced antibacterial properties render it an appealing candidate for combating multi-drug-resistant Gram-negative bacteria. Additionally, the unique readthrough-promoting activity makes it a subject for research as a potential therapeutic agent for Duchenne muscular dystrophy and other hereditary diseases. Here we use the unusual (R)-β-lysine found in negamycin as a guide to identify the biosynthetic pathway of negamycin and then carry out gene deletion and chemical complementation, stable isotope feeding and enzyme assays to elucidate the key precursors for negamycin assembly. Our work identified NegB as a lysine-2,3-aminomutase that converts lysine into (R)-β-lysine and NegJ as a heme-dependent, N-N bond-forming enzyme. We show that NegJ, together with a ferredoxin encoded outside of the negamycin gene cluster, directly forms hydrazinoacetic acid from glycine and nitrite. NegJ is a novel biocatalyst for N-N bond formation, and our work highlights its potential for genome mining of N-N bond-containing natural products.
Collapse
Affiliation(s)
- Menghua Wang
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zi-Wang Wei
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Huang R, Zhi N, Yu L, Li Y, Wu X, He J, Zhu H, Qiao J, Liu X, Tian C, Wang J, Dong M. Genetically Encoded Photosensitizer Protein Reduces Iron–Sulfur Clusters of Radical SAM Enzymes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rongrong Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ning Zhi
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yaoyang Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangyu Wu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiale He
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongji Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
4
|
Grell TA, Bell BN, Nguyen C, Dowling DP, Bruender NA, Bandarian V, Drennan CL. Crystal structure of AdoMet radical enzyme 7-carboxy-7-deazaguanine synthase from Escherichia coli suggests how modifications near [4Fe-4S] cluster engender flavodoxin specificity. Protein Sci 2019; 28:202-215. [PMID: 30341796 PMCID: PMC6295903 DOI: 10.1002/pro.3529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022]
Abstract
7-Carboxy-7-deazaguanine synthase, QueE, catalyzes the radical mediated ring contraction of 6-carboxy-5,6,7,8-tetrahydropterin, forming the characteristic pyrrolopyrimidine core of all 7-deazaguanine natural products. QueE is a member of the S-adenosyl-L-methionine (AdoMet) radical enzyme superfamily, which harnesses the reactivity of radical intermediates to perform challenging chemical reactions. Members of the AdoMet radical enzyme superfamily utilize a canonical binding motif, a CX3 CXϕC motif, to bind a [4Fe-4S] cluster, and a partial (β/α)6 TIM barrel fold for the arrangement of AdoMet and substrates for catalysis. Although variations to both the cluster-binding motif and the core fold have been observed, visualization of drastic variations in the structure of QueE from Burkholderia multivorans called into question whether a re-haul of the defining characteristics of this superfamily was in order. Surprisingly, the structure of QueE from Bacillus subtilis revealed an architecture more reminiscent of the classical AdoMet radical enzyme. With these two QueE structures revealing varying degrees of alterations to the classical AdoMet fold, a new question arises: what is the purpose of these alterations? Here, we present the structure of a third QueE enzyme from Escherichia coli, which establishes the middle range of the spectrum of variation observed in these homologs. With these three homologs, we compare and contrast the structural architecture and make hypotheses about the role of these structural variations in binding and recognizing the biological reductant, flavodoxin. Broader impact statement: We know more about how enzymes are tailored for catalytic activity than about how enzymes are tailored to react with a physiological reductant. Here, we consider structural differences between three 7-carboxy-7-deazaguanine synthases and how these differences may be related to the interaction between these enzymes and their biological reductant, flavodoxin.
Collapse
Affiliation(s)
- Tsehai A.J. Grell
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Benjamin N. Bell
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Chi Nguyen
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts02139
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | - Daniel P. Dowling
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| | | | - Vahe Bandarian
- Department of ChemistryUniversity of Utah, Salt Lake CityUtah84112
| | - Catherine L. Drennan
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusetts02139
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeMassachusetts02139
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts02139
| |
Collapse
|
5
|
Maiocco SJ, Walker LM, Elliott SJ. Determining Redox Potentials of the Iron-Sulfur Clusters of the AdoMet Radical Enzyme Superfamily. Methods Enzymol 2018; 606:319-339. [PMID: 30097097 DOI: 10.1016/bs.mie.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While protein film electrochemistry (PFE) has proven to be an effective tool in the interrogation of redox cofactors and assessing the electrocatalytic activity of many different enzymes, recently it has been proven to be useful for the study of the redox potentials of the cofactors of AdoMet radical enzymes (AREs). In this chapter, we review the challenges and opportunities of examining the redox cofactors of AREs in a high level of detail, particularly for the deconvolution of redox potentials of multiple cofactors. We comment on how to best assess the electroactive nature of any given ARE, and we see that when applied well, PFE allows for not only determining redox potentials, but also determining proton-coupling and ligand-binding phenomena in the ARE superfamily.
Collapse
Affiliation(s)
| | - Lindsey M Walker
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Sean J Elliott
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
6
|
Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides. J Am Chem Soc 2017; 139:11734-11744. [PMID: 28704043 PMCID: PMC6443407 DOI: 10.1021/jacs.7b01283] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.
Collapse
Affiliation(s)
- Tyler L. Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Paul M. Himes
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Sungwon Hwang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Albert A Bowers
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Bruender NA, Wilcoxen J, Britt RD, Bandarian V. Biochemical and Spectroscopic Characterization of a Radical S-Adenosyl-L-methionine Enzyme Involved in the Formation of a Peptide Thioether Cross-Link. Biochemistry 2016; 55:2122-34. [PMID: 27007615 DOI: 10.1021/acs.biochem.6b00145] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide-derived natural products are a class of metabolites that afford the producing organism a selective advantage over other organisms in their biological niche. While the polypeptide antibiotics produced by the nonribosomal polypeptide synthetases (NRPS) are the most widely recognized, the ribosomally synthesized and post-translationally modified peptides (RiPPs) are an emerging group of natural products with diverse structures and biological functions. Both the NRPS derived peptides and the RiPPs undergo extensive post-translational modifications to produce structural diversity. Here we report the first characterization of the six cysteines in forty-five (SCIFF) [Haft, D. H. and Basu M. K. (2011) J. Bacteriol. 193, 2745-2755] peptide maturase Tte1186, which is a member of the radical S-adenosyl-l-methionine (SAM) superfamily. Tte1186 catalyzes the formation of a thioether cross-link in the peptide Tte1186a encoded by an orf located upstream of the maturase, under reducing conditions in the presence of SAM. Tte1186 contains three [4Fe-4S] clusters that are indispensable for thioether cross-link formation; however, only one cluster catalyzes the reductive cleavage of SAM. Mechanistic imperatives for the reaction catalyzed by the thioether forming radical SAM maturases will be discussed.
Collapse
Affiliation(s)
- Nathan A Bruender
- Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Vahe Bandarian
- Chemistry Department, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Bruender NA, Young AP, Bandarian V. Chemical and Biological Reduction of the Radical SAM Enzyme 7-Carboxy-7-deazaguanine [corrected] Synthase. Biochemistry 2015; 54:2903-10. [PMID: 25933252 DOI: 10.1021/acs.biochem.5b00210] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The radical S-adenosyl-L-methionine (SAM) superfamily is a large and growing group of enzymes that conduct complex radical-mediated transformations. A one-electron reduction of SAM via the +1 state of the cubane [4Fe-4S] cluster generates a 5'-deoxyadenosyl radical, which initiates turnover. The [4Fe-4S] cluster must be reduced from its resting +2 state to the catalytically active +1 oxidation state by an electron. In practice, dithionite or the Escherichia coli flavodoxin (EcFldA)/ferredoxin (flavodoxin):NADP(+) oxidoreductase (Fpr)/NADPH system is used. Herein, we present a systematic investigation of the reductive activation of the radical SAM enzyme CDG synthase (BsQueE) from Bacillus subtilis comparing biological and chemical reductants. These data show that either of the flavodoxin homologues encoded by the B. subtilis genome, BsYkuN or BsYkuP, as well as a series of small molecule redox mediators, supports BsQueE activity. With dithionite as a reductant, the activity of BsQueE is ~75-fold greater in the presence of BsYkuN and BsYkuP compared to that in the presence of dithionite alone. By contrast, EcFldA supports turnover to ~10-fold greater levels than dithionite alone under the same conditions. Comparing the ratio of the rate of turnover to the apparent binding constant for the flavodoxin homologues reveals 10- and 240-fold preferences for BsYkuN over BsYkuP and EcFldA, respectively. The differential activation of the enzyme cannot be explained by the abortive cleavage of SAM. We conclude from these observations that the differential activation of BsQueE by Fld homologues may reside in the details of the interaction between the flavodoxin and the radical SAM enzyme.
Collapse
Affiliation(s)
- Nathan A Bruender
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| | - Anthony P Young
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| | - Vahe Bandarian
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States
| |
Collapse
|
9
|
Dong M, Su X, Dzikovski B, Dando EE, Zhu X, Du J, Freed JH, Lin H. Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis. J Am Chem Soc 2014; 136:1754-7. [PMID: 24422557 PMCID: PMC3985478 DOI: 10.1021/ja4118957] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. The biosynthesis of diphthamide was proposed to involve three steps. The first step is the transfer of the 3-amino-3-carboxypropyl group from S-adenosyl-l-methionine (SAM) to the histidine residue of EF2, forming a C-C bond. Previous genetic studies showed this step requires four proteins in eukaryotes, Dph1-Dph4. However, the exact molecular functions for the four proteins are unknown. Previous study showed that Pyrococcus horikoshii Dph2 (PhDph2), a novel iron-sulfur cluster-containing enzyme, forms a homodimer and is sufficient for the first step of diphthamide biosynthesis in vitro. Here we demonstrate by in vitro reconstitution that yeast Dph1 and Dph2 form a complex (Dph1-Dph2) that is equivalent to the homodimer of PhDph2 and is sufficient to catalyze the first step in vitro in the presence of dithionite as the reductant. We further demonstrate that yeast Dph3 (also known as KTI11), a CSL-type zinc finger protein, can bind iron and in the reduced state can serve as an electron donor to reduce the Fe-S cluster in Dph1-Dph2. Our study thus firmly establishes the functions for three of the proteins involved in eukaryotic diphthamide biosynthesis. For most radical SAM enzymes in bacteria, flavodoxins and flavodoxin reductases are believed to serve as electron donors for the Fe-S clusters. The finding that Dph3 is an electron donor for the Fe-S clusters in Dph1-Dph2 is thus interesting and opens up new avenues of research on electron transfer to Fe-S proteins in eukaryotic cells.
Collapse
Affiliation(s)
- Min Dong
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
McCarty RM, Krebs C, Bandarian V. Spectroscopic, steady-state kinetic, and mechanistic characterization of the radical SAM enzyme QueE, which catalyzes a complex cyclization reaction in the biosynthesis of 7-deazapurines. Biochemistry 2012. [PMID: 23194065 DOI: 10.1021/bi301156w] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
7-Carboxy-7-deazaguanine (CDG) synthase (QueE) catalyzes the complex heterocyclic radical-mediated conversion of 6-carboxy-5,6,7,8-tetrahydropterin (CPH(4)) to CDG in the third step of the biosynthetic pathway to all 7-deazapurines. Here we present a detailed characterization of QueE from Bacillus subtilis to delineate the mechanism of conversion of CPH(4) to CDG. QueE is a member of the radical S-adenosyl-l-methionine (SAM) superfamily, all of which use a bound [4Fe-4S](+) cluster to catalyze the reductive cleavage of the SAM cofactor to generate methionine and a 5'-deoxyadenosyl radical (5'-dAdo(•)), which initiates enzymatic transformations requiring hydrogen atom abstraction. The ultraviolet-visible, electron paramagnetic resonance, and Mössbauer spectroscopic features of the homodimeric QueE point to the presence of a single [4Fe-4S] cluster per monomer. Steady-state kinetic experiments indicate a K(m) of 20 ± 7 μM for CPH(4) and a k(cat) of 5.4 ± 1.2 min(-1) for the overall transformation. The kinetically determined K(app) for SAM is 45 ± 1 μM. QueE is also magnesium-dependent and exhibits a K(app) for the divalent metal ion of 0.21 ± 0.03 mM. The SAM cofactor supports multiple turnovers, indicating that it is regenerated at the end of each catalytic cycle. The mechanism of rearrangement of QueE was probed with CPH(4) isotopologs containing deuterium at C-6 or the two prochiral positions at C-7. These studies implicate 5'-dAdo(•) as the initiator of the ring contraction reaction catalyzed by QueE by abstraction of the H atom from C-6 of CPH(4).
Collapse
Affiliation(s)
- Reid M McCarty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
11
|
Dowling DP, Vey JL, Croft AK, Drennan CL. Structural diversity in the AdoMet radical enzyme superfamily. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:1178-95. [PMID: 22579873 PMCID: PMC3523193 DOI: 10.1016/j.bbapap.2012.04.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022]
Abstract
AdoMet radical enzymes are involved in processes such as cofactor biosynthesis, anaerobic metabolism, and natural product biosynthesis. These enzymes utilize the reductive cleavage of S-adenosylmethionine (AdoMet) to afford l-methionine and a transient 5'-deoxyadenosyl radical, which subsequently generates a substrate radical species. By harnessing radical reactivity, the AdoMet radical enzyme superfamily is responsible for an incredible diversity of chemical transformations. Structural analysis reveals that family members adopt a full or partial Triose-phosphate Isomerase Mutase (TIM) barrel protein fold, containing core motifs responsible for binding a catalytic [4Fe-4S] cluster and AdoMet. Here we evaluate over twenty structures of AdoMet radical enzymes and classify them into two categories: 'traditional' and 'ThiC-like' (named for the structure of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (ThiC)). In light of new structural data, we reexamine the 'traditional' structural motifs responsible for binding the [4Fe-4S] cluster and AdoMet, and compare and contrast these motifs with the ThiC case. We also review how structural data combine with biochemical, spectroscopic, and computational data to help us understand key features of this enzyme superfamily, such as the energetics, the triggering, and the molecular mechanisms of AdoMet reductive cleavage. This article is part of a Special Issue entitled: Radical SAM Enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Daniel P. Dowling
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jessica L. Vey
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262
| | - Anna K. Croft
- School of Chemistry, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, UK
| | - Catherine L. Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
12
|
Martin CH, Nielsen DR, Solomon KV, Prather KLJ. Synthetic metabolism: engineering biology at the protein and pathway scales. ACTA ACUST UNITED AC 2009; 16:277-86. [PMID: 19318209 DOI: 10.1016/j.chembiol.2009.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
Abstract
Biocatalysis has become a powerful tool for the synthesis of high-value compounds, particularly so in the case of highly functionalized and/or stereoactive products. Nature has supplied thousands of enzymes and assembled them into numerous metabolic pathways. Although these native pathways can be use to produce natural bioproducts, there are many valuable and useful compounds that have no known natural biochemical route. Consequently, there is a need for both unnatural metabolic pathways and novel enzymatic activities upon which these pathways can be built. Here, we review the theoretical and experimental strategies for engineering synthetic metabolic pathways at the protein and pathway scales, and highlight the challenges that this subfield of synthetic biology currently faces.
Collapse
Affiliation(s)
- Collin H Martin
- Department of Chemical Engineering, Synthetic Biology Engineering Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
13
|
Wang SC, Frey PA. Binding energy in the one-electron reductive cleavage of S-adenosylmethionine in lysine 2,3-aminomutase, a radical SAM enzyme. Biochemistry 2007; 46:12889-95. [PMID: 17944492 PMCID: PMC2553252 DOI: 10.1021/bi701745h] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The common step in the actions of members of the radical SAM superfamily of enzymes is the one-electron reductive cleavage of S-adenosyl-l-methionine (SAM) into methionine and the 5'-deoxyadenosyl radical. The source of the electron is the [4Fe-4S]1+ cluster characterizing the radical SAM superfamily, to which SAM is directly ligated through its methionyl carboxylate and amino groups. The energetics of the reductive cleavage of SAM is an outstanding question in the actions of radical SAM enzymes. The energetics is here reported for the action of lysine 2,3-aminomutase (LAM), which catalyzes the interconversion of l-lysine and l-beta-lysine. From earlier work, the reduction potential of the [4Fe-4S]2+/1+ cluster in LAM is -0.43 V with SAM bound to the cluster (Hinckley, G. T., and Frey, P. A. (2006) Biochemistry 45, 3219-3225), 1.4 V higher than the reported value for trialkylsulfonium ions in solution. The midpoint reduction potential upon binding l-lysine has been estimated to be -0.6 V from the values of midpoint potentials measured with SAM bound to the cluster and l-alanine in place of l-lysine, with S-adenosyl-l-homocysteine (SAH) bound to the cluster in the presence of l-lysine, and with SAH bound to the cluster in the presence of l-alanine or of l-alanine and ethylamine in place of l-lysine. The reduction potential for SAM has been estimated to be -0.99 V from the measured value for S-3',4'-anhydroadenosyl-l-methionine. The reduction potential for the [4Fe-4S] cluster is lowered 0.17 V by the binding of lysine to LAM, and the binding of SAM to the [4Fe-4S] cluster in LAM elevates its reduction potential by 0.81 V. Thus, the binding of l-lysine to LAM contributes 4 kcal mol-1, and the binding of SAM to the [4Fe-4S] cluster in LAM contributes 19 kcal mol-1 toward lowering the barrier for reductive cleavage of SAM from 32 kcal mol-1 in solution to 9 kcal mol-1 at the active site of LAM.
Collapse
Affiliation(s)
- Susan C Wang
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53726, USA
| | | |
Collapse
|