2
|
Ling Y, Li WJ, Li FF, Xue XB, Gao YY, Wang L, Liang K, Li XJ. Microbial gut diversity in four grasshopper species and its correlation with cellulose digestibility. Front Microbiol 2022; 13:1002532. [PMID: 36439812 PMCID: PMC9684308 DOI: 10.3389/fmicb.2022.1002532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 01/10/2024] Open
Abstract
Grasshoppers are common pests, and their intestinal microbes have coevolved with them. These microorganisms have varied community structures, and they participate in the nutritional absorption and metabolism of grasshoppers. Here, we describe the gut microbiota diversity of four species of grasshoppers, Oxya chinensis, Pararcyptera microptera meridionalis, Gastrimargus marmoratus, and Calliptamus abbreviatus. We constructed a 16S rDNA gene library and analyzed the digestibility of cellulose and hemicellulose in grasshoppers using moss black phenol and anthrone colorimetry. The grasshopper with the highest microbial diversity in the gut among the four species was Oxya chinensis, and there were no significant differences in gut microbial diversity between the two geographic collections of Oxya chinensis. The most dominant phyla of the four grasshopper gut microorganisms were Proteobacteria, Bacteroidetes, and Firmicutes, and the most dominant genus was Enterobacter. The gut microbiota features of the four grasshoppers were correlated with their cellulose and hemicellulose digestibility. There was a significant positive correlation with cellulose digestibility for Pantoea. A significant negative correlation was found with cellulose digestibility for Acinetobacter, Enterococcus, Citrobacter, Serratia. A significant negative correlation was found with hemicellulose digestibility for Pantoea. This study contributes to the understanding of the structural composition of different species of grasshoppers gut microbiota, which may be useful for developing grasshopper digestive tracts as bioreactors for cellulose decomposition, improving the decomposition and utilization of agricultural straw, producing clean biomass energy, and processing biologically derived products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
3
|
Wadler CS, Wolters JF, Fortney NW, Throckmorton KO, Zhang Y, Miller CR, Schneider RM, Wendt-Pienkowski E, Currie CR, Donohue TJ, Noguera DR, Hittinger CT, Thomas MG. Utilization of lignocellulosic biofuel conversion residue by diverse microorganisms. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:70. [PMID: 35751080 PMCID: PMC9233362 DOI: 10.1186/s13068-022-02168-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lignocellulosic conversion residue (LCR) is the material remaining after deconstructed lignocellulosic biomass is subjected to microbial fermentation and treated to remove the biofuel. Technoeconomic analyses of biofuel refineries have shown that further microbial processing of this LCR into other bioproducts may help offset the costs of biofuel generation. Identifying organisms able to metabolize LCR is an important first step for harnessing the full chemical and economic potential of this material. In this study, we investigated the aerobic LCR utilization capabilities of 71 Streptomyces and 163 yeast species that could be engineered to produce valuable bioproducts. The LCR utilization by these individual microbes was compared to that of an aerobic mixed microbial consortium derived from a wastewater treatment plant as representative of a consortium with the highest potential for degrading the LCR components and a source of genetic material for future engineering efforts. RESULTS We analyzed several batches of a model LCR by chemical oxygen demand (COD) and chromatography-based assays and determined that the major components of LCR were oligomeric and monomeric sugars and other organic compounds. Many of the Streptomyces and yeast species tested were able to grow in LCR, with some individual microbes capable of utilizing over 40% of the soluble COD. For comparison, the maximum total soluble COD utilized by the mixed microbial consortium was about 70%. This represents an upper limit on how much of the LCR could be valorized by engineered Streptomyces or yeasts into bioproducts. To investigate the utilization of specific components in LCR and have a defined media for future experiments, we developed a synthetic conversion residue (SynCR) to mimic our model LCR and used it to show lignocellulose-derived inhibitors (LDIs) had little effect on the ability of the Streptomyces species to metabolize SynCR. CONCLUSIONS We found that LCR is rich in carbon sources for microbial utilization and has vitamins, minerals, amino acids and other trace metabolites necessary to support growth. Testing diverse collections of Streptomyces and yeast species confirmed that these microorganisms were capable of growth on LCR and revealed a phylogenetic correlation between those able to best utilize LCR. Identification and quantification of the components of LCR enabled us to develop a synthetic LCR (SynCR) that will be a useful tool for examining how individual components of LCR contribute to microbial growth and as a substrate for future engineering efforts to use these microorganisms to generate valuable bioproducts.
Collapse
Affiliation(s)
- Caryn S Wadler
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - John F Wolters
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Nathaniel W Fortney
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Kurt O Throckmorton
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Yaoping Zhang
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Caroline R Miller
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Rachel M Schneider
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Evelyn Wendt-Pienkowski
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Daniel R Noguera
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Chris Todd Hittinger
- Wisconsin Energy Institute, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
- Laboratory of Genetics, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI, 53726, USA.
| |
Collapse
|
4
|
Xylan Deconstruction by Thermophilic Thermoanaerobacterium bryantii Hemicellulases Is Stimulated by Two Oxidoreductases. Catalysts 2022. [DOI: 10.3390/catal12020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thermoanaerobacterium bryantii strain mel9T is a thermophilic bacterium isolated from a waste pile of a corn-canning factory. The genome of T. bryantii mel9T was sequenced and a hemicellulase gene cluster was identified. The cluster encodes seven putative enzymes, which are likely an endoxylanase, an α-glucuronidase, two oxidoreductases, two β-xylosidases, and one acetyl xylan esterase. These genes were designated tbxyn10A, tbagu67A, tbheoA, tbheoB, tbxyl52A, tbxyl39A, and tbaxe1A, respectively. Only TbXyn10A released reducing sugars from birchwood xylan, as shown by thin-layer chromatography analysis. The five components of the hemicellulase cluster (TbXyn10A, TbXyl39A, TbXyl52A, TbAgu67A, and TbAxe1A) functioned in synergy to hydrolyze birchwood xylan. Surprisingly, the two putative oxidoreductases increased the enzymatic activities of the gene products from the xylanolytic gene cluster in the presence of NADH and manganese ions. The two oxidoreductases were therefore named Hemicellulase-Enhancing Oxidoreductases (HEOs). All seven enzymes were thermophilic and acted in synergy to degrade xylans at 60 °C. Except for TbXyn10A, the other enzymes encoded by the gene cluster were conserved with high amino acid identities (85–100%) in three other Thermoanaerobacterium species. The conservation of the gene cluster is, therefore, suggestive of an important role of these enzymes in xylan degradation by these bacteria. The mechanism for enhancement of hemicellulose degradation by the HEOs is under investigation. It is anticipated, however, that the discovery of these new actors in hemicellulose deconstruction will have a significant impact on plant cell wall deconstruction in the biofuel industry.
Collapse
|
8
|
Qi H, Li S, Zhao S, Huang D, Xia M, Wen J. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS One 2014; 9:e93815. [PMID: 24705866 PMCID: PMC3976320 DOI: 10.1371/journal.pone.0093815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/06/2014] [Indexed: 12/05/2022] Open
Abstract
To rationally guide the improvement of isobutanol production, metabolic network and metabolic profiling analysis were performed to provide global and profound insights into cell metabolism of isobutanol-producing Bacillus subtilis. The metabolic flux distribution of strains with different isobutanol production capacity (BSUL03, BSUL04 and BSUL05) drops a hint of the importance of NADPH on isobutanol biosynthesis. Therefore, the redox pathways were redesigned in this study. To increase NADPH concentration, glucose-6-phosphate isomerase was inactivated (BSUL06) and glucose-6-phosphate dehydrogenase was overexpressed (BSUL07) successively. As expected, NADPH pool size in BSUL07 was 4.4-fold higher than that in parental strain BSUL05. However, cell growth, isobutanol yield and production were decreased by 46%, 22%, and 80%, respectively. Metabolic profiling analysis suggested that the severely imbalanced redox status might be the primary reason. To solve this problem, gene udhA of Escherichia coli encoding transhydrogenase was further overexpressed (BSUL08), which not only well balanced the cellular ratio of NAD(P)H/NAD(P)+, but also increased NADH and ATP concentration. In addition, a straightforward engineering approach for improving NADPH concentrations was employed in BSUL05 by overexpressing exogenous gene pntAB and obtained BSUL09. The performance for isobutanol production by BSUL09 was poorer than BSUL08 but better than other engineered strains. Furthermore, in fed-batch fermentation the isobutanol production and yield of BSUL08 increased by 11% and 19%, up to the value of 6.12 g/L and 0.37 C-mol isobutanol/C-mol glucose (63% of the theoretical value), respectively, compared with parental strain BSUL05. These results demonstrated that model-driven complemented with metabolic profiling analysis could serve as a useful approach in the strain improvement for higher bio-productivity in further application.
Collapse
Affiliation(s)
- Haishan Qi
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Shanshan Li
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Sumin Zhao
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Di Huang
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Menglei Xia
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People's Republic of China
- * E-mail:
| |
Collapse
|