1
|
Yang Y, Li Q, Xiao Y, Shen Y, Wei R, Zhang Y, Zhang W, Lei N, Pei X. Unravelling of the interaction mechanism of PFOA with submerged macrophytes and epiphytic biofilms at gene and molecular level. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137418. [PMID: 39914338 DOI: 10.1016/j.jhazmat.2025.137418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Perfluorooctanoic acid (PFOA) is a global concern for the remediation of aquatic environments due to its toxicity, persistence and bioaccumulation. To gain a comprehensive understanding of the effects of PFOA on submerged macrophytes and epiphytic biofilms in eutrophic waters, as well as the mechanisms of PFOA and nutrient removal by submerged macrophyte-biofilm system, plant-attached biofilms were cultured under PFOA stress. Results indicated that PFOA exposure leads to an increase in ROS in plants, seriously damaging cellular systems, activating enzyme antioxidants to protect plant cells from oxidative damage. Additionally, PFOA affects microbial diversity, structure and function in biofilms, with Cyanobacteria and Proteobacteria being the dominant groups. While impacting both plants and biofilms, PFOA will be absorbed by them. PFOA binds to channel proteins (ULX0, VIH9) on plant cells and enters the plant, thus removing it from the environment. Plant co-cultivation has the highest pollutant removal rate of PFOA, reaching to 33.00 %. Furthermore, metagenomics analyses revealed that alterations in genes associated with N (nxrB, nxrA) and P (phoR, pstA) cycling of in the biofilm microorganisms facilitated the removal of N and P, with removal rates of 98.00 % and 99.42 %, respectively. These findings contribute to the ecological assessment of PFOA and provide valuable sights into the mechanisms of PFOA, N and P removal in eutrophic lakes by plants and epiphytic biofilms.
Collapse
Affiliation(s)
- Yixia Yang
- State Key Laboratory of Geohazard Preventionand Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, PR China
| | - Qi Li
- State Key Laboratory of Geohazard Preventionand Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China; Tianfu Yongxing Laboratory, Chengdu 610213, PR China.
| | - Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yifan Shen
- State Key Laboratory of Geohazard Preventionand Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, PR China
| | - Renjie Wei
- State Key Laboratory of Geohazard Preventionand Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, PR China
| | - Yumiao Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Preventionand Geoenvironment Protection (Chengdu University of Technology), Chengdu 610059, PR China; Tianfu Yongxing Laboratory, Chengdu 610213, PR China.
| |
Collapse
|
2
|
Fu CX, Chen C, Xiang Q, Wang YF, Wang L, Qi FY, Zhu D, Li HZ, Cui L, Hong WL, Rillig MC, Zhu YG, Qiao M. Antibiotic resistance at environmental multi-media interfaces through integrated genotype and phenotype analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136160. [PMID: 39413517 DOI: 10.1016/j.jhazmat.2024.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Antibiotic resistance is currently an unfolding global crisis threatening human health worldwide. While antibiotic resistance genes (ARGs) are known to be pervasive in environmental media, the occurrence of antibiotic resistance at interfaces between two or more adjacent media is largely unknown. Here, we designed a microcosm study to simulate plastic pollution in paddy soil and used a novel method, stimulated Raman scattering coupled with deuterium oxide (D2O) labelling, to compare the antibiotic resistance in a single medium with that at the interface of multiple environmental media (plastic, soil, water). Results revealed that the involvement of more types of environmental media at interfaces led to a higher proportion of active resistant bacteria. Genotypic analysis showed that ARGs (especially high-risk ARGs) and mobile genetic elements (MGEs) were all highly enriched at the interfaces. This enrichment was further enhanced by the co-stress of heavy metal (arsenic) and antibiotic (ciprofloxacin). Our study is the first to apply stimulated Raman scattering to elucidate antibiotic resistance at environmental interfaces and reveals novel pathway of antibiotic resistance dissemination in the environment and overlooked risks to human health.
Collapse
Affiliation(s)
- Chen-Xi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chen Chen
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Feng-Yuan Qi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei-Li Hong
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
3
|
Perujo N, Neuert L, Fink P, Weitere M. Saturation of intracellular phosphorus uptake and prevalence of extracellular phosphorus entrapment in fluvial biofilms after long-term P pulses: Implications for river self-purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175976. [PMID: 39241886 DOI: 10.1016/j.scitotenv.2024.175976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Microbial consortia in riverbed substrates and their extracellular matrix (biofilms) play a key role in phosphorus (P) entrapment. When P entrapment saturates, the benthic compartment changes from a P sink to a P source thus increasing eutrophication risk. P entrapment saturation is expected to differ between intracellular and extracellular P entrapment and between different magnitudes and durations of P inputs. We studied biofilm P-entrapment following short (48 h) and long (14 days) P loading events in stream bypass flumes supplied with a gradient of dissolved P concentrations. This allowed us to link local biofilm processes in sediments to potential effects on river self-purification, via quantifying the P removal efficiency in the flumes. We found that in short-term events, biofilms develop intracellular mechanisms to cope with P inputs, while long-term events and high P inputs suppress the intracellular uptake mechanisms and increase the prevalence of extracellular entrapment. Specifically, long-term events lowered the threshold for intracellular P entrapment saturation, and decreased the ratio between intracellular and extracellular entrapment resulting in lower removal efficiency for dissolved phosphorus. Our results highlight the risk that aquatic ecosystems may face as the ratio of intracellular to extracellular P entrapment decreases, which may reduce their ability to deal with P inputs, thereby increasing risks of eutrophication.
Collapse
Affiliation(s)
- Nuria Perujo
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany.
| | - Lola Neuert
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany
| | - Patrick Fink
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany; Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research - UFZ, Brϋckstrasse 3a, 39114 Magdeburg, Germany
| | - Markus Weitere
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg, Germany; Technical University of Dresden, 01069 Dresden, Germany
| |
Collapse
|
4
|
Sun P, Fan K, Jiang Y, Chu H, Chen Y, Wu Y. Accumulated temperature dictates the regional structural variation of prokaryotic periphyton at soil-water interface in paddy fields. WATER RESEARCH 2024; 265:122259. [PMID: 39154398 DOI: 10.1016/j.watres.2024.122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
As a pervasive microbial aggregate found at the water-soil interface in paddy fields, periphyton plays crucial roles in modulating nutrient biogeochemical cycling. Consequently, it effectively mitigates non-point source pollution due to its diverse composition. Despite its significance, the mechanisms governing periphyton diversity across different rice planting regions remain poorly understood. To bridge this gap, we investigated periphyton grown in 200 paddy fields spanning 25° of latitude. Initially, we analyzed local diversity and latitudinal variations in prokaryotic communities within paddy field periphyton, identifying 7 abundant taxa, 42 moderate taxa, and 39 rare taxa as the fundamental prokaryotic framework. Subsequently, to elucidate the mechanisms governing periphyton diversity across large scales, we constructed interaction models illustrating triangular relationships among local richness, assembly, and regional variation of prokaryotic subcommunities. Our findings suggest that accumulated temperature-driven environmental filtering partially influences the assembly process of prokaryotes, thereby impacting local species richness and ultimately governing regional structural variations in periphyton. Furthermore, we determined that a latitude of 39° represents the critical threshold maximizing local species richness of periphyton in paddy fields. This study advances our understanding of the factors shaping periphyton geo-imprints and provides valuable insights into predicting their responses to environmental changes, potentially influencing rice production outcomes.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Kunkun Fan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Yuji Jiang
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Haiyan Chu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China
| | - Yin Chen
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, UK.
| | - Yonghong Wu
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.298 Chuangyou Road, Nanjing 211135, China; University of Chinese Academy of Sciences, No.188, Tianquan Road, Nanjing 211135, China.
| |
Collapse
|
5
|
Zhu Y, Tu X, Bi Y, Song G, Mi W. Competition in the Periphytic Algal Community during the Colonization Process: Evidence from the World's Largest Water Diversion Project. PLANTS (BASEL, SWITZERLAND) 2024; 13:2067. [PMID: 39124185 PMCID: PMC11314427 DOI: 10.3390/plants13152067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Periphytic algal colonization is common in aquatic systems, but its interspecific competition remains poorly understood. In order to fill the gap, the process of periphytic algal colonization in the Middle Route of the South to North Water Diversion Project was studied. The results showed that the process was divided into three stages: the initial colonization stage (T1, 3-6 days), community formation stage (T2, 12-18 days) and primary succession stage (T3, 24-27 days). In T1, the dominant species were Diatoma vulgaris (Bory), Navicula phyllepta (Kützing) and Fragilaria amphicephaloides (Lange-Bertalot) belonging to Heterokontophyta; these species boasted wide niche widths (NWs), low niche overlap (NO) and low ecological response rates (ERRs). In T2, the dominant species were Diatoma vulgaris, Cymbella affinis (Kützing), Navicula phyllepta, Fragilaria amphicephaloides, Gogorevia exilis (Kützing), Melosira varians (C.Agardh), Phormidium willei (N.L.Gardner) and Cladophora rivularis (Kuntze). These species displayed wider NWs, lower NO, and lower ERRs than those in T1. In T3, the dominant species were Diatoma vulgaris, Cymbella affinis, Navicula phyllepta, Fragilaria amphicephaloides, Achnanthes exigu (Grunow), etc. Among them, Heterokontophyta such as Diatoma vulgaris and Cymbella affinis had a competitive advantage based on NWs and ERRs. Cyanobacteria like Phormidium willei lost their dominant status due to the narrower NW and the increased NO. It could be concluded the interspecific competition became fiercer and shaped the colonization process; this study will be helpful in understanding the colonization of periphytic algal communities.
Collapse
Affiliation(s)
- Yuxuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| | - Xiaojie Tu
- Hubei Key Laboratory of Resources and Eco-Environment Geology (Hubei Geological Bureau), Wuhan 430034, China;
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.Z.); (Y.B.); (G.S.)
| |
Collapse
|
6
|
Li Q, Xiao Y, Zhang W, Li S, Liu J, Yu Y, Wen Y, Zhang Y, Lei N, Wang Q. Single and combined toxicity effects of microplastics and perfluorooctanoic acid on submerged macrophytes and biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165370. [PMID: 37423285 DOI: 10.1016/j.scitotenv.2023.165370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Microplastics (MPs) and Perfluorooctanoic acid (PFOA) have contaminated nearly all types of ecosystems, including marine, terrestrial and freshwater habitats, posing a severe threat to the ecological environment. However, their combined toxicity on aquatic organisms (e.g., macrophytes) remains unknown. This study investigated single and combined toxic effects of polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), polyethylene terephthalate (PET) and PFOA on Vallisneria natans (V. natans) and associated biofilms. Results showed that MPs and PFOA significantly affected plant growth, while the magnitude of the effect was associated with concentrations of PFOA and the types of MPs, and antagonistic effects were induced at combined MPs and PFOA exposure. In addition, antioxidant responses in plants, such as promoted activities of SOD and POD, as well as increased content of GSH and MDA, were triggered effectively by exposure to MPs and PFOA alone and in combination. Ultrastructural changes revealed the stress response of leaf cells and the damage to organelles. Moreover, single and combined exposure to MPs and PFOA altered the diversity and richness of the microbial community in the leaf biofilms. These results indicated that the coexistence of MPs and PFOA can induce effective defense mechanisms of V. natans and change the associated biofilms at given concentrations in the aquatic ecosystems.
Collapse
Affiliation(s)
- Qi Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yunxing Xiao
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Weizhen Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Shuang Li
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jing Liu
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yangjinzhi Yu
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yueling Wen
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yumiao Zhang
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Ningfei Lei
- School of Ecological Environment, Chengdu University of Technology, Chengdu 610059, China
| | | |
Collapse
|
7
|
Jha V, Bombaywala S, Purohit H, Dafale NA. Differential colonization and functioning of microbial community in response to phosphate levels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115856. [PMID: 35985261 DOI: 10.1016/j.jenvman.2022.115856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Microbes play a major role in phosphate cycling and regulate its availability in various environments. The metagenomic study highlights the microbial community divergence and interplay of phosphate metabolism functional genes in response to phosphate rich (100 mgL-1), limiting (25 mgL-1), and stressed (5 mgL-1) conditions at lab-scale bioreactor. Total five core phyla were found responsive toward different phosphate (Pi) levels. However, major variations were observed in Proteobacteria and Actinobacteria with 33-81% and 5-56% relative abundance, respectively. Canonical correspondence analysis reflects the colonization of Sinorhizobium (0.8-4%), Mesorhizobium (1-4%), Rhizobium (0.5-3%) in rich condition whereas, Pseudomonas (1-2%), Rhodococcus (0.2-2%), Flavobacterium (0.2-1%) and Streptomyces (0.3-4%) colonized in limiting and stress condition. The functional profiling demonstrates that Pi limiting and stress condition subjected biomass were characterized by abundant PQQ-Glucose dehydrogenase, alkaline phosphatase, 5'-nucleotidase, and phospholipases C genes. The finding implies that the major abundant genera belonging to phosphate solubilization enriched in limiting/stressed conditions decide the functional turnover by modulating the metabolic flexibility for Pi cycling. The study gives a better insight into intrinsic ecological responsiveness mediated by microbial communities in different Pi conditions that would help to design the microbiome according to the soil phosphate condition. Furthermore, this information assists in sustainably maintaining the ecological balance by omitting excessive chemical fertilizers and eutrophication.
Collapse
Affiliation(s)
- Varsha Jha
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sakina Bombaywala
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|