1
|
Li H, Gai X, Xu X, Qin J, Klosterman SJ, Subbarao KV, Shang W, Hu X. Verticillium dahliae Secretory Aspartyl Protease VdSAP Targets Cotton GhARP to Modulate Plant Defence and Defoliation. MOLECULAR PLANT PATHOLOGY 2025; 26:e70085. [PMID: 40251993 PMCID: PMC12008774 DOI: 10.1111/mpp.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/25/2025] [Accepted: 04/01/2025] [Indexed: 04/21/2025]
Abstract
Verticillium dahliae isolates causing devastating vascular wilt in cotton plants can be divided into defoliating and nondefoliating pathotypes. The mechanisms underlying how V. dahliae uses secretory proteins to manipulate plant physiological processes and suppress immunity in cotton plants have received renewed research focus over the past several years. Here, we describe the role of a secretory protein named VdSAP (secretory aspartyl protease) from the defoliating V. dahliae strain XJ592 in virulence and defoliation. Deletion of VdSAP in strain XJ592 led to significantly reduced virulence and cotton plant defoliation. VdSAP functioned as a protease that targeted cotton plant GhARP (auxin-repressed protein), and VdSAP negatively regulated GhARP content in plants. Transient expression of GhARP in Nicotiana benthamiana enhanced the expression of plant defence signals and inhibited plant abscission signals. Furthermore, GhARP negatively regulated the ethylene (ET) signal and positively regulated the salicylic acid (SA) signal. In addition, GhARP interacted with 1-aminocyclopropane carboxylate oxidases (GhACOs), suggesting that it might function through the ET signal during V. dahliae-cotton plant interactions. These results suggest that GhARP is a molecular link between plant defence and abscission signals, and that VdSAP decreases accumulation of GhARP and enhances the virulence and defoliation caused by V. dahliae.
Collapse
Affiliation(s)
- Haiyuan Li
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
- Institute of Plant Protection, Jiangxi Academy of Agricultural SciencesNanchangChina
| | - Xiaotong Gai
- Yunnan Academy of Tobacco Agricultural SciencesKunmingChina
| | - Xiangming Xu
- Pest and Pathogen Ecology, NIAB East MallingWest MallingUK
| | - Jun Qin
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Steve J. Klosterman
- United States Department of Agriculture Agricultural Research ServiceSalinasCaliforniaUSA
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davis, United States Crop Improvement and Protection Research CenterSalinasCaliforniaUSA
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Liu T, Yu H, Qin J, Shang W, Chen J, Subbarao KV, Hu X. A Gene Cassette Vd276-280 in Verticillium dahliae Contains Two Genes that Affect Melanized Microsclerotium Formation and Virulence. PHYTOPATHOLOGY 2024; 114:2515-2524. [PMID: 39145683 DOI: 10.1094/phyto-11-23-0426-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Verticillium dahliae is a soilborne phytopathogenic fungus causing Verticillium wilt on hundreds of plant species. Several sequenced genomes of V. dahliae are available, but functional characterization of most genes has just begun. Based on our previous comparison of the transcriptome from the wild-type and ΔVdCf2 strains, a significant upregulation of the gene cassette, Vd276-280, in the ΔVdCf2 strain was observed. In this study, the functional characterization of the Vd276-280 gene cassette was performed. Agrobacterium-mediated knockout of this gene cassette in V. dahliae significantly inhibited conidiation, melanized microsclerotium formation in the mutant strains, and their virulence toward cotton. Furthermore, deletion of individual genes in the Vd276-280 gene cassette identified that the disruption of VDAG_07276 and VDAG_07280 delayed microsclerotium formation, inhibited conidiation, and reduced virulence toward cotton. Our data suggest that VDAG_07276 and VDAG_07280 in the Vd276-280 gene cassette mainly act as positive regulators of development and virulence in V. dahliae.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Haonan Yu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Qin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing Shang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, Xinjiang, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905, U.S.A
| | - Xiaoping Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Li Y, Li Y, Yang Q, Song S, Zhang Y, Zhang X, Sun J, Liu F, Li Y. Dual Transcriptome Analysis Reveals the Changes in Gene Expression in Both Cotton and Verticillium dahliae During the Infection Process. J Fungi (Basel) 2024; 10:773. [PMID: 39590692 PMCID: PMC11595654 DOI: 10.3390/jof10110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cotton is often threatened by Verticillium wilt caused by V. dahliae. Understanding the molecular mechanism of V. dahlia-cotton interaction is important for the prevention of this disease. To analyze the transcriptome profiles in V. dahliae and cotton simultaneously, the strongly pathogenic strain Vd592 was inoculated into cotton, and the infected cotton roots at 36 h and 3 d post infection were subjected to dual RNA-seq analysis. For the V. dahliae, transcriptomic analysis identified 317 differentially expressed genes (DEGs) encoding classical secreted proteins, which were up-regulated at least at one time point during infection. The 317 DEGs included 126 carbohydrate-active enzyme (CAZyme) and 108 small cysteine-rich protein genes. A pectinesterase gene (VDAG_01782) belonging to CAZyme, designated as VdPE1, was selected for functional validation. VdPE1 silencing by HIGS (host-induced gene silencing) resulted in reduced disease symptoms and the increased resistance of cotton to V. dahliae. For the cotton, transcriptomic analysis found that many DEGs involved in well-known disease resistance pathways (flavonoid biosynthesis, plant hormone signaling, and plant-pathogen interaction) as well as PTI (pattern-triggered immunity) and ETI (effector-triggered immunity) processes were significantly down-regulated in infected cotton roots. The dual RNA-seq data thus potentially connected the genes encoding secreted proteins to the pathogenicity of V. dahliae, and the genes were involved in some disease resistance pathways and PTI and ETI processes for the susceptibility of cotton to V. dahliae. These findings are helpful in the further characterization of candidate genes and breeding resistant cotton varieties via genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Liu
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China; (Y.L.); (Y.L.); (Q.Y.); (S.S.); (Y.Z.); (X.Z.); (J.S.)
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832003, China; (Y.L.); (Y.L.); (Q.Y.); (S.S.); (Y.Z.); (X.Z.); (J.S.)
| |
Collapse
|
4
|
Sayari M, Dolatabadian A, El-Shetehy M, Daayf F. Genomic insights into Verticillium: a review of progress in the genomics era. Front Microbiol 2024; 15:1463779. [PMID: 39464398 PMCID: PMC11502406 DOI: 10.3389/fmicb.2024.1463779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Genomics has emerged as a great tool in enhancing our understanding of the biology of Verticillium species and their interactions with the host plants. Through different genomic approaches, researchers have gained insights into genes, pathways and virulence factors that play crucial roles in both Verticillium pathogenesis and the defense responses of their host organisms. This review emphasizes the significance of genomics in uncovering the mechanisms that underlie pathogenicity, virulence, and host resistance in Verticillium fungi. Our goal is to summarize recent discoveries in Verticillium research highlighting progress made in comprehending the biology and interactions of Verticillium fungi. The integration of genomics into Verticillium studies has the potential to open avenues for developing strategies to control diseases and produce crop varieties resistant to verticillium, thereby offering sustainable solutions for enhancing agricultural productivity.
Collapse
Affiliation(s)
- M. Sayari
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A. Dolatabadian
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - M. El-Shetehy
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, Egypt
| | - F. Daayf
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Tang C, Wang H, Jin X, Li W, Wang Y. Transcription factors containing both C 2H 2 and homeobox domains play different roles in Verticillium dahliae. mSphere 2024; 9:e0040924. [PMID: 39189776 PMCID: PMC11423567 DOI: 10.1128/msphere.00409-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Verticillium dahliae causes Verticillium wilt in more than 200 plant species worldwide. As a soilborne fungus, it forms melanized microsclerotia and colonizes the xylem of host plants. Our previous study revealed a subfamily of C2H2-homeobox transcription factors in V. dahliae, but their biological roles remain unknown. In this study, we systematically characterized the functions of seven C2H2-homeobox transcription factors in V. dahliae. Deletion of VdChtf3 and VdChtf6 significantly decreased the production of melanized microsclerotia, and knockout of VdChtf1 and VdChtf4 enhanced virulence. Loss of VdChtf2 and VdChtf6 increased conidium production, whereas loss of VdChtf5 and VdChtf7 did not affect growth, conidiation, microsclerotial formation, or virulence. Further research showed that VdChtf3 activated the expression of genes encoding pectic enzymes to participate in microsclerotial formation. In addition, VdChtf4 reduced the expression of VdSOD1 to disturb the scavenging of superoxide radicals but induced the expression of genes related to cell wall synthesis to maintain cell wall integrity. These findings highlight the diverse roles of different members of the C2H2-homeobox gene family in V. dahliae. IMPORTANCE Verticillium dahliae is a soilborne fungus that causes plant wilt and can infect a variety of economic crops and woody trees. The molecular basis of microsclerotial formation and infection by this fungus remains to be further studied. In this study, we analyzed the functions of seven C2H2-homobox transcription factors. Notably, VdChtf3 and VdChtf4 exhibited the most severe defects, affecting phenotypes associated with critical developmental stages in the V. dahliae disease cycle. Our results indicate that VdChtf3 is a potential specific regulator of microsclerotial formation, modulating the expression of pectinase-encoding genes. This finding could contribute to a better understanding of microsclerotial development in V. dahliae. Moreover, VdChtf4 was associated with cell wall integrity, reactive oxygen species (ROS) stress resistance, and increased virulence. These discoveries shed light on the biological significance of C2H2-homeobox transcription factors in V. dahliae's adaptation to the environment and infection of host plants.
Collapse
Affiliation(s)
- Chen Tang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Haifeng Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xianjiang Jin
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wenwen Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
6
|
Li Y, Song S, Chen B, Zhang Y, Sun T, Ma X, Li Y, Sun J, Zhang X. Deleting an xylosidase-encoding gene VdxyL3 increases growth and pathogenicity of Verticillium dahlia. Front Microbiol 2024; 15:1428780. [PMID: 39104581 PMCID: PMC11298495 DOI: 10.3389/fmicb.2024.1428780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Verticillium dahliae causes a devastating Verticillium wilt disease on hundreds of plant species worldwide, including cotton. Understanding the interaction mechanism between V. dahliae and its hosts is the prerequisite for developing effective strategies for disease prevention. Methods Here, based on the previous observation of an xylosidase-encoding gene (VdxyL3) in V. dahliae being obviously up-regulated after sensing root exudates from a cotton variety susceptible to this pathogen, we investigated the function of VdxyL3 in the growth and pathogenesis of V. dahliae by generating its deletion-mutant strains (ΔVdxyL3). Results Deleting VdxyL3 led to increased colony expansion rate, conidial production, mycelial growth, carbon and nitrogen utilization capacities, and enhanced stress tolerance and pathogenicity of V. dahliae. VdxyL3 is a secretory protein; however, VdxyL3 failed to induce cell death in N. benthamiana based on transient expression experiment. Transcriptomic analysis identified 1300 genes differentially expressed (DEGs) between wild-type (Vd952) and ΔVdxyL3 during infection, including 348 DEGs encoding secretory proteins, among which contained 122 classical secreted proteins and 226 non-classical secreted proteins. It was notable that of the 122 classical secretory proteins, 50 were carbohydrate-active enzymes (CAZymes) and 58 were small cysteine rich proteins (SCRPs), which were required for the pathogenicity of V. dahliae. Conclusion The RNA-seq data thus potentially connected the genes encoding these proteins to the pathogenesis of V. dahliae. This study provides an experimental basis for further studies on the interaction between V. dahliae and cotton and the pathogenic mechanism of the fungus.
Collapse
Affiliation(s)
- Yongtai Li
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Shenglong Song
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Bin Chen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ürümqi, Xinjiang, China
| | - Yong Zhang
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Tiange Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaohu Ma
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Xinyu Zhang
- The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
7
|
Liang H, Li F, Huang Y, Yu Q, Huang Z, Zeng Q, Chen B, Meng J. FsCGBP, a Cutinase G-Box Binding Protein, Regulates the Growth, Development, and Virulence of Fusarium sacchari, the Pathogen of Sugarcane Pokkah Boeng Disease. J Fungi (Basel) 2024; 10:246. [PMID: 38667917 PMCID: PMC11051240 DOI: 10.3390/jof10040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Fusarium sacchari is a causal agent of sugarcane Pokkah boeng, an important fungal disease that causes a considerable reduction in yield and sugar content in susceptible varieties of sugarcane worldwide. Despite its importance, the fungal factors that regulate the virulence of this pathogen remain largely unknown. In our previous study, mapping of an insertional mutant defect in virulence resulted in the identification of a cutinase G-box binding protein gene, designated FsCGBP, that encodes a C2H2-type transcription factor (TF). FsCGBP was shown to localize in the nuclei, and the transcript level of FsCGBP was significantly upregulated during the infection process or in response to abiotic stresses. Deletion or silencing of FsCGBP resulted in a reduction in mycelial growth, conidial production, and virulence and a delay in conidial germination in the F. sacchari. Cutinase genes FsCUT2, FsCUT3, and FsCUT4 and the mitogen-activated protein kinase (MAPK) genes FsHOG1, FsMGV1, and FsGPMK1, which were significantly downregulated in ΔFsCGBP. Except for FsHOG1, all of these genes were found to be transcriptionally activated by FsCGBP using the yeast one-hybrid system in vitro. The deletion of individual cutinase genes did not result in any of the phenotypes exhibited in the ΔFsCGBP mutant, except for cutinase activity. However, disruption of the MAPK pathway upon deletion of FsMGV1 or FsGPMK1 resulted in phenotypes similar to those of the ΔFsCGBP mutant. The above results suggest that FsCGBP functions by regulating the MAPK pathway and cutinase genes, providing new insights into the mechanism of virulence regulation in F. sacchari.
Collapse
Affiliation(s)
- Haoming Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yundan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Quan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhenxin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Quan Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiaorong Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning 530004, China; (H.L.); (F.L.); (Y.H.); (Q.Y.); (Z.H.); (Q.Z.); (B.C.)
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Yang J, Liu M, Jiao Y, Guo HS, Shan CM, Wang H. An Efficient Homologous Recombination-Based In Situ Protein-Labeling Method in Verticillium dahliae. BIOLOGY 2024; 13:81. [PMID: 38392300 PMCID: PMC10886240 DOI: 10.3390/biology13020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Accurate determination of protein localization, levels, or protein-protein interactions is pivotal for the study of their function, and in situ protein labeling via homologous recombination has emerged as a critical tool in many organisms. While this approach has been refined in various model fungi, the study of protein function in most plant pathogens has predominantly relied on ex situ or overexpression manipulations. To dissect the molecular mechanisms of development and infection for Verticillium dahliae, a formidable plant pathogen responsible for vascular wilt diseases, we have established a robust, homologous recombination-based in situ protein labeling strategy in this organism. Utilizing Agrobacterium tumefaciens-mediated transformation (ATMT), this methodology facilitates the precise tagging of specific proteins at their C-termini with epitopes, such as GFP and Flag, within the native context of V. dahliae. We demonstrate the efficacy of our approach through the in situ labeling of VdCf2 and VdDMM2, followed by subsequent confirmation via subcellular localization and protein-level analyses. Our findings confirm the applicability of homologous recombination for in situ protein labeling in V. dahliae and suggest its potential utility across a broad spectrum of filamentous fungi. This labeling method stands to significantly advance the field of functional genomics in plant pathogenic fungi, offering a versatile and powerful tool for the elucidation of protein function.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengran Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Jiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haiting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Li H, Sheng RC, Zhang CN, Wang LC, Li M, Wang YH, Qiao YH, Klosterman SJ, Chen JY, Kong ZQ, Subbarao KV, Chen FM, Zhang DD. Two zinc finger proteins, VdZFP1 and VdZFP2, interact with VdCmr1 to promote melanized microsclerotia development and stress tolerance in Verticillium dahliae. BMC Biol 2023; 21:237. [PMID: 37904147 PMCID: PMC10617112 DOI: 10.1186/s12915-023-01697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/08/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Melanin plays important roles in morphological development, survival, host-pathogen interactions and in the virulence of phytopathogenic fungi. In Verticillum dahliae, increases in melanin are recognized as markers of maturation of microsclerotia which ensures the long-term survival and stress tolerance, while decreases in melanin are correlated with increased hyphal growth in the host. The conserved upstream components of the VdCmr1-regulated pathway controlling melanin production in V. dahliae have been extensively identified, but the direct activators of this pathway are still unclear. RESULTS We identified two genes encoding conserved C2H2-type zinc finger proteins VdZFP1 and VdZFP2 adjacent to VdPKS9, a gene encoding a negative regulator of both melanin biosynthesis and microsclerotia formation in V. dahliae. Both VdZFP1 and VdZFP2 were induced during microsclerotia development and were involved in melanin deposition. Their localization changed from cytoplasmic to nuclear in response to osmotic pressure. VdZFP1 and VdZFP2 act as modulators of microsclerotia melanization in V. dahliae, as confirmed by melanin biosynthesis inhibition and supplementation with the melanin pathway intermediate scytalone in albino strains. The results indicate that VdZFP1 and VdZFP2 participate in melanin biosynthesis by positively regulating VdCmr1. Based on the results obtained with yeast one- and two-hybrid (Y1H and Y2H) and bimolecular fluorescence complementation (BiFC) systems, we determined the melanin biosynthesis relies on the direct interactions among VdZFP1, VdZFP2 and VdCmr1, and these interactions occur on the cell walls of microsclerotia. Additionally, VdZFP1 and/or VdZFP2 mutants displayed increased sensitivity to stress factors rather than alterations in pathogenicity, reflecting the importance of melanin in stress tolerance of V. dahliae. CONCLUSIONS Our results revealed that VdZFP1 and VdZFP2 positively regulate VdCmr1 to promote melanin deposition during microsclerotia development, providing novel insight into the regulation of melanin biosynthesis in V. dahliae.
Collapse
Affiliation(s)
- Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chen-Ning Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Li-Chao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Min Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Ya-Hong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Yu-Hang Qiao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station,, Salinas, CA, USA.
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
10
|
Xue J, Zhang H, Zhao Q, Cui S, Yu K, Sun R, Yu Y. Construction of Yeast One-Hybrid Library of Alternaria oxytropis and Screening of Transcription Factors Regulating swnK Gene Expression. J Fungi (Basel) 2023; 9:822. [PMID: 37623593 PMCID: PMC10455089 DOI: 10.3390/jof9080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional complex enzyme encoding gene in fungal SW biosynthesis, and its encoding product plays a key role in the multistep catalytic synthesis of SW by fungi using pipecolic acid as a precursor. However, the transcriptional regulation mechanism of the swnK gene is still unclear. To identify the transcriptional regulators involved in the swnK gene in endophytic fungi of locoweeds, we first analyzed the upstream non-coding region of the swnK gene in the A. oxytropis UA003 strain and predicted its high transcriptional activity region combined with dual-luciferase reporter assay. Then, a yeast one-hybrid library of A. oxytropis UA003 strain was constructed, and the transcriptional regulatory factors that may bind to the high-transcriptional activity region of the upstream non-coding region of the swnK gene were screened by this system. The results showed that the high transcriptional activity region was located at -656 bp and -392 bp of the upstream regulatory region of the swnK gene. A total of nine candidate transcriptional regulator molecules, including a C2H2 type transcription factor, seven annotated proteins, and an unannotated protein, were screened out through the Y1H system, which were bound to the upstream high transcriptional activity region of the swnK gene. This study provides new insight into the transcriptional regulation of the swnK gene and lays the foundation for further exploration of the regulatory mechanisms of SW biosynthesis in fungal endophytic locoweeds.
Collapse
Affiliation(s)
- Jiaqi Xue
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haodong Zhang
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmei Zhao
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Cui
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Kun Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruohan Sun
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
11
|
Nagel A, Leonard M, Maurus I, Starke J, Schmitt K, Valerius O, Harting R, Braus GH. The Frq-Frh Complex Light-Dependently Delays Sfl1-Induced Microsclerotia Formation in Verticillium dahliae. J Fungi (Basel) 2023; 9:725. [PMID: 37504714 PMCID: PMC10381341 DOI: 10.3390/jof9070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The vascular plant pathogenic fungus Verticillium dahliae has to adapt to environmental changes outside and inside its host. V. dahliae harbors homologs of Neurospora crassa clock genes. The molecular functions and interactions of Frequency (Frq) and Frq-interacting RNA helicase (Frh) in controlling conidia or microsclerotia development were investigated in V. dahliae JR2. Fungal mutant strains carrying clock gene deletions, an FRH point mutation, or GFP gene fusions were analyzed on transcript, protein, and phenotypic levels as well as in pathogenicity assays on tomato plants. Our results support that the Frq-Frh complex is formed and that it promotes conidiation, but also that it suppresses and therefore delays V. dahliae microsclerotia formation in response to light. We investigated a possible link between the negative element Frq and positive regulator Suppressor of flocculation 1 (Sfl1) in microsclerotia formation to elucidate the regulatory molecular mechanism. Both Frq and Sfl1 are mainly present during the onset of microsclerotia formation with decreasing protein levels during further development. Induction of microsclerotia formation requires Sfl1 and can be delayed at early time points in the light through the Frq-Frh complex. Gaining further molecular knowledge on V. dahliae development will improve control of fungal growth and Verticillium wilt disease.
Collapse
Affiliation(s)
- Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
12
|
Wang D, Wen S, Zhao Z, Long Y, Fan R. Hypothetical Protein VDAG_07742 Is Required for Verticillium dahliae Pathogenicity in Potato. Int J Mol Sci 2023; 24:3630. [PMID: 36835042 PMCID: PMC9965449 DOI: 10.3390/ijms24043630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Verticillium dahliae is a soil-borne pathogenic fungus that causes Verticillium wilt in host plants, a particularly serious problem in potato cultivation. Several pathogenicity-related proteins play important roles in the host infection process, hence, identifying such proteins, especially those with unknown functions, will surely aid in understanding the mechanism responsible for the pathogenesis of the fungus. Here, tandem mass tag (TMT) was used to quantitatively analyze the differentially expressed proteins in V. dahliae during the infection of the susceptible potato cultivar "Favorita". Potato seedlings were infected with V. dahliae and incubated for 36 h, after which 181 proteins were found to be significantly upregulated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that most of these proteins were involved in early growth and cell wall degradation. The hypothetical, secretory protein with an unknown function, VDAG_07742, was significantly upregulated during infection. The functional analysis with knockout and complementation mutants revealed that the associated gene was not involved in mycelial growth, conidial production, or germination; however, the penetration ability and pathogenicity of VDAG_07742 deletion mutants were significantly reduced. Therefore, our results strongly indicate that VDAG_07742 is essential in the early stage of potato infection by V. dahliae.
Collapse
Affiliation(s)
| | | | | | | | - Rong Fan
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|