1
|
Cooper WR, Walker WB, Angelella GM, Swisher Grimm KD, Foutz JJ, Harper SJ, Nottingham LB, Northfield TD, Wohleb CH, Strausbaugh CA. Bacterial Endosymbionts Identified From Leafhopper (Hemiptera: Cicadellidae) Vectors of Phytoplasmas. ENVIRONMENTAL ENTOMOLOGY 2023; 52:243-253. [PMID: 36869841 DOI: 10.1093/ee/nvad015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 06/18/2023]
Abstract
Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.
Collapse
Affiliation(s)
- William Rodney Cooper
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - William B Walker
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Gina M Angelella
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Kylie D Swisher Grimm
- USDA-ARS Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, USA
| | - Jillian J Foutz
- Department of Entomology, Washington State University, 166 FSHN Building, Pullman, WA 99164, USA
| | - Scott J Harper
- Department of Plant Pathology, Washington State University, Irrigated Agriculture Research and Education Center, Prosser, WA 99350, USA
| | - Louis B Nottingham
- Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Tobin D Northfield
- Department of Entomology, Washington State University, Tree Fruit Research and Extension Center, 1100 N. Western Avenue, Wenatchee, WA 98801, USA
| | - Carrie H Wohleb
- Washington State University Extension, 1525 E. Wheeler Road, Moses Lake, WA 98837, USA
| | - Carl A Strausbaugh
- USDA-ARS Northwest Irrigation and Soils Research Laboratory, Kimberly, ID 83341, USA
| |
Collapse
|
2
|
Abbà S, Rossi M, Vallino M, Galetto L, Marzachì C, Turina M. Metatranscriptomic Assessment of the Microbial Community Associated With the Flavescence dorée Phytoplasma Insect Vector Scaphoideus titanus. Front Microbiol 2022; 13:866523. [PMID: 35516423 PMCID: PMC9063733 DOI: 10.3389/fmicb.2022.866523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Phytoplasmas are insect-borne pathogenic bacteria that cause major economic losses to several crops worldwide. The dynamic microbial community associated with insect vectors influences several aspects of their biology, including their vector competence for pathogens. Unraveling the diversity of the microbiome of phytoplasma insect vectors is gaining increasing importance in the quest to develop novel microbe-based pest control strategies that can minimize the use of insecticides for better environmental quality. The leafhopper Scaphoideus titanus is the primary vector of the Flavescence dorée phytoplasma, a quarantine pest which is dramatically affecting the main grape-growing European countries. In this study, the RNA-Seq data, which were previously used for insect virus discovery, were further explored to assess the composition of the whole microbial community associated with insects caught in the wild in both its native (the United States) and invasive (Europe) areas. The first de novo assembly of the insect transcriptome was used to filter the host sequencing reads. The remaining ones were assembled into contigs and analyzed by blastx to provide the taxonomic identification of the microorganisms associated with S. titanus, including the non-bacterial components. By comparing the transcriptomic libraries, we could differentiate the stable and consistent associations from the more ephemeral and flexible ones. Two species appeared to be universal to the core microbiome of S. titanus: the obligate bacterial symbiont Candidatus Sulcia muelleri and an Ophiocordyceps-allied fungus distantly related to yeast-like symbionts described from other hemipterans. Bacteria of the genus Cardinium have been identified as another dominant member of the microbiome, but only in the European specimens. Although we are yet to witness how the interplay among the microorganisms influences the vector competence of S. titanus, this unbiased in silico characterization of its microbiome is paramount for identifying the naturally occurring targets for new biocontrol strategies to counteract Flavescence dorée spread in Europe.
Collapse
|
3
|
Kapantaidaki DE, Antonatos S, Evangelou V, Papachristos DP, Milonas P. Genetic and endosymbiotic diversity of Greek populations of Philaenus spumarius, Philaenus signatus and Neophilaenus campestris, vectors of Xylella fastidiosa. Sci Rep 2021; 11:3752. [PMID: 33580178 PMCID: PMC7881138 DOI: 10.1038/s41598-021-83109-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
The plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.
Collapse
Affiliation(s)
- Despoina Ev Kapantaidaki
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece.
| | - Spyridon Antonatos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Vasiliki Evangelou
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Dimitrios P Papachristos
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| | - Panagiotis Milonas
- Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 St. Delta str., Kifissia, Attica, Greece
| |
Collapse
|
4
|
Zhang RY, Shan HL, Huang YK, Wang XY, Li J, Li WF, Cang XY, Yin J, Luo ZM. Survey of Incidence and Nested PCR Detection of Sugarcane White Leaf in Different Varieties. PLANT DISEASE 2020; 104:2665-2668. [PMID: 32749946 DOI: 10.1094/pdis-11-19-2482-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sugarcane white leaf (SCWL) is a devastating sugarcane (Saccharum officinarum) disease caused by a 16SrXI group phytoplasma, which is extremely harmful to sugarcane production. To determine the occurrence of SCWL in different varieties in 2018, we conducted a field survey and performed nested PCR detection of SCWL phytoplasma in cane-planting areas of Mangweng and Hepai in Gengma, Yunnan province, which are the areas most severely affected by SCWL in China. The results of the field survey showed that the symptomatic incidence of SCWL differed among varieties. The mean symptomatic incidence of SCWL on variety Yuetang60 was the highest (73.50%), and it was the lowest on Liucheng05-136 (13.67%). Using nested PCR, the SCWL phytoplasma was detected in symptomatic plants of all varieties more than 90% of the time; the SCWL phytoplasma was detected in 91 and 97% of symptomatic plants of Yingyu91-59 and Liucheng05-136 varieties, respectively. The SCWL phytoplasma was detected by PCR in 82% of the asymptomatic plant samples. The results of this study showed that field survey based on white leaf symptoms did not accurately reflect the actual occurrence of the SCWL phytoplasma.
Collapse
Affiliation(s)
- Rong-Yue Zhang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Hong-Li Shan
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Ying-Kun Huang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Xiao-Yan Wang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Jie Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Wen-Feng Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Xiao-Yan Cang
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Jiong Yin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| | - Zhi-Ming Luo
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, P.R. China
| |
Collapse
|
5
|
Karimi S, Izadi H, Askari Seyahooei M, Bagheri A, Khodaygan P. Variation in bacterial endosymbionts associated with the date palm hopper, Ommatissus lybicus populations. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:271-281. [PMID: 28807085 DOI: 10.1017/s0007485317000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The date palm hopper, Ommatissus lybicus, is a key pest of the date palm, which is expected to be comprised of many allopatric populations. The current study was carried out to determine bacterial endosymbiont diversity in the different populations of this pest. Ten date palm hopper populations were collected from the main date palm growing regions in Iran and an additional four samples from Pakistan, Oman, Egypt and Tunisia for detection of primary and secondary endosymbionts using polymerase chain reaction (PCR) assay with their specific primers. The PCR products were directly sequenced and edited using SeqMan software. The consensus sequences were subjected to a BLAST similarity search. The results revealed the presence of 'Candidatus Sulcia muelleri' (primary endosymbiont) and Wolbachia, Arsenophonus and Enterobacter (secondary endosymbionts) in all populations. This assay failed to detect 'Candidatus Nasuia deltocephalinicola' and Serratia in these populations. 'Ca. S. muelleri' exhibited a 100% infection frequency in populations and Wolbachia, Arsenophonus and Enterobacter demonstrated 100, 93.04 and 97.39% infection frequencies, respectively. The infection rate of Arsenophonus and Enterobacter ranged from 75 to 100% and 62.5 to 100%, respectively, in different populations of the insect. The results demonstrated multiple infections by 'Ca. Sulcia muelleri', Wolbachia, Arsenophonus and Enterobacter in the populations and may suggest significant roles for these endosymbionts on date palm hopper population fitness. This study provides an insight to endosymbiont variation in the date palm hopper populations; however, further investigation is needed to examine how these endosymbionts may affect host fitness.
Collapse
Affiliation(s)
- S Karimi
- Department of Plant Protection,Faculty of Agriculture,Vali-e-Asr University,Rafsanjan,Iran
| | - H Izadi
- Department of Plant Protection,Faculty of Agriculture,Vali-e-Asr University,Rafsanjan,Iran
| | - M Askari Seyahooei
- Plant Protection Research Department,Hormozgan Agricultural and Natural Resources Research and Education Center,Agricultural Research Education and Extension Organization (AREEO),Bandar Abbas,Iran
| | - A Bagheri
- Plant Protection Research Department,Hormozgan Agricultural and Natural Resources Research and Education Center,Agricultural Research Education and Extension Organization (AREEO),Bandar Abbas,Iran
| | - P Khodaygan
- Department of Plant Protection,Faculty of Agriculture,Vali-e-Asr University,Rafsanjan,Iran
| |
Collapse
|
6
|
Brentassi ME, Franco E, Balatti P, Medina R, Bernabei F, Marino de Remes Lenicov AM. Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission. PROTOPLASMA 2017; 254:1421-1429. [PMID: 27730310 DOI: 10.1007/s00709-016-1033-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
In this study, we surveyed the bacteriome-associated microbiota of the corn leafhopper Dalbulus maidis by means of histological, ultrastructural, and molecular analyses. Amplification and sequencing of 16S rDNA genes revealed that the endosymbiont "Candidatus Sulcia muelleri" (Phylum Bacteroidetes) resides in bacteriomes of D. maidis. Phylogenetic analysis showed that the sequence was closely allied to others found in representatives of the subfamily Deltocephalinae. We failed to amplify other sequences as "Candidatus Nasuia deltocephalinicola," a co-primary symbiont frequently associated to deltocephaline leafhoppers. In addition, a metagenetic analysis carried out in order to investigate the presence of other bacteriome-associated bacteria of D. maidis showed that the sequence of Sulcia accounted for 98.56 % of all the sequences. Histological and ultrastructural observations showed that microorganisms harbored in bacteriomes (central syncytium and cytoplasm of uninucleate bacteriocytes) look like others Sulcia described in hemipteran species and they were transovarially transmitted from mother to offspring which is typical of obligate endosymbionts. The only presence of Sulcia in the bacteriomes of D. maidis was discussed.
Collapse
Affiliation(s)
- María Eugenia Brentassi
- División Entomología. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), 1900, La Plata, Argentina.
- Comisión de Investigaciones Científicas, Pcia de Bs. As. (CIC) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), La Plata, Argentina.
| | - Ernesto Franco
- Centro de Investigaciones de Fitopatología (CIDEFI). Facultad de Ciencias Agrarias y Forestales, UNLP-CIC, La Plata, Argentina
| | - Pedro Balatti
- Centro de Investigaciones de Fitopatología (CIDEFI). Facultad de Ciencias Agrarias y Forestales, UNLP-CIC, La Plata, Argentina
| | - Rocío Medina
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI). Facultad de Ciencias Exactas, UNLP-CONICET, La Plata, Argentina
| | - Franco Bernabei
- Centro de Investigaciones de Fitopatología (CIDEFI). Facultad de Ciencias Agrarias y Forestales, UNLP-CIC, La Plata, Argentina
| | - Ana M Marino de Remes Lenicov
- División Entomología. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), 1900, La Plata, Argentina
- Comisión de Investigaciones Científicas, Pcia de Bs. As. (CIC) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), La Plata, Argentina
| |
Collapse
|
7
|
Weintraub PG, Hoch H, Mühlethaler R, Zchori-Fein E. Synchrotron X-ray micro-computed tomography as a tool for in situ elucidation of insect bacteriomes. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:183-186. [PMID: 24291672 DOI: 10.1016/j.asd.2013.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Obligate bacterial endosymbionts are common, influential associates of arthropods, and are often found in specific organs termed bacteriomes. Three dimensional images of bacteriomes of the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae) were reconstructed from synchrotron-based X-ray micro-computed tomography (CT). Results show that bilateral bacteriomes are located between the first and second abdominal tergites, are mushroom-shaped and consist two different types of tissue. Fluorescence in situ hybridization reveals that the primary bacterial symbiont Sulcia muelleri is in the 'cap' part of the of organ. The technique allows a noninvasive, in situ, means of visualizing bacteriomes and will facilitate understanding their form and function.
Collapse
Affiliation(s)
- P G Weintraub
- Agricultural Research Organization, Gilat Research Center, D.N. Negev 85280, Israel.
| | - H Hoch
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, 10115 Berlin, Germany
| | - R Mühlethaler
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, 10115 Berlin, Germany
| | - E Zchori-Fein
- Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
8
|
Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol 2013; 79:5013-22. [PMID: 23770905 DOI: 10.1128/aem.01527-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the endosymbiotic microbiota of the Macrosteles leafhoppers M. striifrons and M. sexnotatus, known as vectors of phytopathogenic phytoplasmas. PCR, cloning, sequencing, and phylogenetic analyses of bacterial 16S rRNA genes identified two obligate endosymbionts, "Candidatus Sulcia muelleri" and "Candidatus Nasuia deltocephalinicola," and five facultative endosymbionts, Wolbachia, Rickettsia, Burkholderia, Diplorickettsia, and a novel bacterium belonging to the Rickettsiaceae, from the leafhoppers. "Ca. Sulcia muelleri" and "Ca. Nasuia deltocephalinicola" exhibited 100% infection frequencies in the host species and populations and were separately harbored within different bacteriocytes that constituted a pair of coherent bacteriomes in the abdomen of the host insects, as in other deltocephaline leafhoppers. Wolbachia, Rickettsia, Burkholderia, Diplorickettsia, and the novel Rickettsiaceae bacterium exhibited infection frequencies at 7%, 31%, 12%, 0%, and 24% in M. striifrons and at 20%, 0%, 0%, 20%, and 0% in M. sexnotatus, respectively. Although undetected in the above analyses, phytoplasma infections were detected in 16% of M. striifrons and 60% of M. sexnotatus insects by nested PCR of 16S rRNA genes. Two genetically distinct phytoplasmas, namely, "Candidatus Phytoplasma asteris," associated with aster yellows and related plant diseases, and "Candidatus Phytoplasma oryzae," associated with rice yellow dwarf disease, were identified from the leafhoppers. These results highlight strikingly complex endosymbiotic microbiota of the Macrosteles leafhoppers and suggest ecological interactions between the obligate endosymbionts, the facultative endosymbionts, and the phytopathogenic phytoplasmas within the same host insects, which may affect vector competence of the leafhoppers.
Collapse
|