1
|
Galea D, Herzberg M, Dobritzsch D, Fuszard M, Nies DH. Linking the transcriptome to physiology: response of the proteome of Cupriavidus metallidurans to changing metal availability. Metallomics 2024; 16:mfae058. [PMID: 39562290 DOI: 10.1093/mtomcs/mfae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
Cupriavidus metallidurans CH34 is a metal-resistant bacterium. Its metal homeostasis is based on a flow equilibrium of metal ion uptake and efflux reactions, which adapts to changing metal concentrations within an hour. At high metal concentrations, upregulation of the genes for metal efflux systems occurs within minutes. Here, we investigate the changes in the bacterial proteome accompanying these genetic and physiological events after 1.5 cell duplications, which took 3 h. To that end, C. metallidurans CH34 and its plasmid-free derivative, AE104, either were challenged with a toxic metal mix or were cultivated under metal-starvation conditions, followed by bottom-up proteomics. When metal-shocked or -starved cells were compared with their respective controls, 3540 proteins changed in abundance, with 76% appearing in one, but not the other, condition; the remaining 24% were up- or downregulated. Metal-shocked C. metallidurans strains had adjusted their proteomes to combat metal stress. The most prominent polypeptides were the products of the plasmid-encoded metal-resistance determinants in strain CH34, particularly the CzcCBA transenvelope efflux system. Moreover, the influence of antisense transcripts on the proteome was also revealed. In one specific example, the impact of an asRNA on the abundance of gene products could be demonstrated and this yielded new insights into the function of the transmembrane efflux complex ZniCBA under conditions of metal starvation.
Collapse
Affiliation(s)
- Diana Galea
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Martin Herzberg
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Dirk Dobritzsch
- Core Facility-Proteomic Mass Spectrometry, Charles Tanford Center, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Matt Fuszard
- Core Facility-Proteomic Mass Spectrometry, Charles Tanford Center, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Dietrich H Nies
- Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
2
|
Dai JX, Yu Y, You LX, Zhong HL, Li YP, Wang AJ, Chorover J, Feng RW, Alwathnani HA, Herzberg M, Rensing C. Integrated induction of silver resistance determinants and production of extracellular polymeric substances in Cupriavidus metallidurans BS1 in response to silver ions and silver nanoparticles. CHEMOSPHERE 2024; 366:143503. [PMID: 39401671 DOI: 10.1016/j.chemosphere.2024.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 μg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.
Collapse
Affiliation(s)
- Jia-Xin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85719, USA
| | - Ren-Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Solar Materials Biotechnology (SOMA), Helmholtz Centre for Environmental Research GmbH (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
3
|
Huang M, Liu W, Qin C, Xu Y, Zhou X, Wen Q, Ma W, Huang Y, Chen X. Copper Resistance Mechanism and Copper Response Genes in Corynebacterium crenatum. Microorganisms 2024; 12:951. [PMID: 38792781 PMCID: PMC11124244 DOI: 10.3390/microorganisms12050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Heavy metal resistance mechanisms and heavy metal response genes are crucial for microbial utilization in heavy metal remediation. Here, Corynebacterium crenatum was proven to possess good tolerance in resistance to copper. Then, the transcriptomic responses to copper stress were investigated, and the vital pathways and genes involved in copper resistance of C. crenatum were determined. Based on transcriptome analysis results, a total of nine significantly upregulated DEGs related to metal ion transport were selected for further study. Among them, GY20_RS0100790 and GY20_RS0110535 belong to transcription factors, and GY20_RS0110270, GY20_RS0100790, and GY20_RS0110545 belong to copper-binding peptides. The two transcription factors were studied for the function of regulatory gene expression. The three copper-binding peptides were displayed on the C. crenatum surface for a copper adsorption test. Furthermore, the nine related metal ion transport genes were deleted to investigate the effect on growth in copper stress. This investigation provided the basis for utilizing C. crenatum in copper bioremediation.
Collapse
Affiliation(s)
- Mingzhu Huang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Wenxin Liu
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Chunyan Qin
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Yang Xu
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Xu Zhou
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Qunwei Wen
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Wenbin Ma
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Yanzi Huang
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| | - Xuelan Chen
- National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (M.H.); (W.L.); (Y.H.)
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China; (C.Q.); (Y.X.); (X.Z.); (Q.W.); (W.M.)
| |
Collapse
|
4
|
Hirth N, Wiesemann N, Krüger S, Gerlach MS, Preußner K, Galea D, Herzberg M, Große C, Nies DH. A gold speciation that adds a second layer to synergistic gold-copper toxicity in Cupriavidus metallidurans. Appl Environ Microbiol 2024; 90:e0014624. [PMID: 38557120 PMCID: PMC11022561 DOI: 10.1128/aem.00146-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Stephanie Krüger
- Microscopy Unit, Biocenter, Martin Luther University Halle Wittenberg, Wittenberg, Germany
| | - Michelle-Sophie Gerlach
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kilian Preußner
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Galea
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Cornelia Große
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Manutsyan T, Blbulyan S, Vassilian A, Semashko T, Kirakosyan G, Gabrielyan L, Trchounian K, Poladyan A. Gold nanoparticles activate hydrogenase synthesis and improve heterotrophic growth of Ralstonia eutropha H16. FEMS Microbiol Lett 2024; 371:fnad138. [PMID: 38167703 DOI: 10.1093/femsle/fnad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/17/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024] Open
Abstract
Ralstonia eutropha is a facultative chemolithoautotrophic aerobic bacterium that grows using organic substrates or H2 and CO2. Hydrogenases (Hyds) are synthesized under lithoautotrophic, or energy-limited heterotrophic conditions and are used in enzyme fuel cells (EFC) as anodic catalysts. The effects of chemically synthesized gold nanoparticles (Au-NPs) on R. eutropha H16 growth, oxidation-reduction potential (ORP) kinetics, and H2-oxidizing Hyd activity were investigated in this study. Atomic force microscopy showed that thin, plate-shaped Au-NPs were in the nanoscale range with an average size of 5.68 nm. Compared with growth in medium without Au-NPs (control), the presence of Au-NPs stimulated growth, and resulted in a decrease in ORP to negative values. H2-oxidizing activity was not detected in the absence of Au-NPs, but activity was significantly induced (12 U/g CDW) after 24 h of growth with 18 ng/ml, increasing a further 4-fold after 72 h of growth. The results demonstrate that Au-NPs primarily influence the membrane-bound Hyd. In contrast to R. eutropha, Au-NPs had a negligible or negative effect on the growth, Hyd activity, and H2 production of Escherichia coli. The findings of this study offer new perspectives for the production of oxygen-tolerant Hyds and the development of EFCs.
Collapse
Affiliation(s)
- Tatevik Manutsyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
| | - Syuzanna Blbulyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
| | - Anait Vassilian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| | | | | | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| | - Anna Poladyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 0025 Yerevan, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan, Armenia
| |
Collapse
|
6
|
Gerlach MS, Neubauer P, Gimpel M. Improved preculture management for Cupriavidus necator cultivations. Biotechnol Lett 2023; 45:1487-1493. [PMID: 37828291 PMCID: PMC10635987 DOI: 10.1007/s10529-023-03436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVES Research on hydrogenases from Cupriavidus necator has been ongoing for more than two decades and still today the common methods for culture inoculation are used. These methods were never adapted to the requirements of modified bacterial strains, resulting in different physiological states of the bacteria in the precultures, which in turn lead prolonged and different lag-phases. RESULTS In order to obtain uniform and always equally fit precultures for inoculation, we have established in this study an optimized protocol for precultures of the derivative of C. necator HF210 (C. necator HP80) which is used for homologous overexpression of the genes for the NAD+-reducing soluble hydrogenase (SH). We compared different media for preculture growth and determined the optimal time point for harvest. The protocol obtained in this study is based on two subsequent precultures, the first one in complex nutrient broth medium (NB) and a second one in fructose -nitrogen mineral salt medium (FN). CONCLUSION Despite having two subsequent precultures our protocol reduces the preculture time to less than 30 h and provides reproducible precultures for cultivation of C. necator HP80.
Collapse
Affiliation(s)
- Michelle-Sophie Gerlach
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, ACK24, 13355, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, ACK24, 13355, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstr. 76, ACK24, 13355, Berlin, Germany.
| |
Collapse
|
7
|
Sanyal SK, Pukala T, Mittal P, Reith F, Brugger J, Etschmann B, Shuster J. From biomolecules to biogeochemistry: Exploring the interaction of an indigenous bacterium with gold. CHEMOSPHERE 2023; 339:139657. [PMID: 37543229 DOI: 10.1016/j.chemosphere.2023.139657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Specialised microbial communities colonise the surface of gold particles in soils/sediments, and catalyse gold dissolution and re-precipitation, thereby contributing to the environmental mobility and toxicity of this 'inert' precious metal. We assessed the proteomic and physiological response of Serratia proteamaculans, the first metabolically active bacterium enriched and isolated directly from natural gold particles, when exposed to toxic levels of soluble Au3+ (10 μM). The results were compared to a metal-free blank, and to cultures exposed to similarly toxic levels of soluble Cu2+ (0.1 mM); Cu was chosen for comparison because it is closely associated with Au in nature due to similar geochemical properties. A total of 273 proteins were detected from the cells that experienced the oxidative effects of soluble Au, of which 139 (51%) were upregulated with either sole expression (31%) or had synthesis levels greater than the Au-free control (20%). The majority (54%) of upregulated proteins were functionally different from up-regulated proteins in the bacteria-copper treatment. These proteins were related to broad functions involving metabolism and biogenesis, followed by cellular process and signalling, indicating significant specificity for Au. This proteomic study revealed that the bacterium upregulates the synthesis of various proteins related to oxidative stress response (e.g., Monothiol-Glutaredoxin, Thiol Peroxidase, etc.) and cellular damage repair, which leads to the formation of metallic gold nanoparticles less toxic than ionic gold. Therefore, indigenous bacteria may mediate the toxicity of Au through two different yet simultaneous processes: i) repairing cellular components by replenishing damaged proteins and ii) neutralising reactive oxygen species (ROS) by up-regulating the synthesis of antioxidants. By connecting the fields of molecular bacteriology and environmental biogeochemistry, this study is the first step towards the development of biotechnologies based on indigenous bacteria applied to gold bio-recovery and bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Santonu K Sanyal
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tara Pukala
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia; School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, 5001, Australia
| | | | - Joël Brugger
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, 3800, Australia
| | - Jeremiah Shuster
- Department of Earth Sciences, Western University, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
8
|
Hirth N, Gerlach MS, Wiesemann N, Herzberg M, Große C, Nies DH. Full Copper Resistance in Cupriavidus metallidurans Requires the Interplay of Many Resistance Systems. Appl Environ Microbiol 2023:e0056723. [PMID: 37191542 DOI: 10.1128/aem.00567-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The metal-resistant bacterium Cupriavidus metallidurans uses its copper resistance components to survive the synergistic toxicity of copper ions and gold complexes in auriferous soils. The cup, cop, cus, and gig determinants encode as central component the Cu(I)-exporting PIB1-type ATPase CupA, the periplasmic Cu(I)-oxidase CopA, the transenvelope efflux system CusCBA, and the Gig system with unknown function, respectively. The interplay of these systems with each other and with glutathione (GSH) was analyzed. Copper resistance in single and multiple mutants up to the quintuple mutant was characterized in dose-response curves, Live/Dead-staining, and atomic copper and glutathione content of the cells. The regulation of the cus and gig determinants was studied using reporter gene fusions and in case of gig also RT-PCR studies, which verified the operon structure of gigPABT. All five systems contributed to copper resistance in the order of importance: Cup, Cop, Cus, GSH, and Gig. Only Cup was able to increase copper resistance of the Δcop Δcup Δcus Δgig ΔgshA quintuple mutant but the other systems were required to increase copper resistance of the Δcop Δcus Δgig ΔgshA quadruple mutant to the parent level. Removal of the Cop system resulted in a clear decrease of copper resistance in most strain backgrounds. Cus cooperated with and partially substituted Cop. Gig and GSH cooperated with Cop, Cus, and Cup. Copper resistance is thus the result of an interplay of many systems. IMPORTANCE The ability of bacteria to maintain homeostasis of the essential-but-toxic "Janus"-faced element copper is important for their survival in many natural environments but also in case of pathogenic bacteria in their respective host. The most important contributors to copper homeostasis have been identified in the last decades and comprise PIB1-type ATPases, periplasmic copper- and oxygen-dependent copper oxidases, transenvelope efflux systems, and glutathione; however, it is not known how all these players interact. This publication investigates this interplay and describes copper homeostasis as a trait emerging from a network of interacting resistance systems.
Collapse
Affiliation(s)
- Niklas Hirth
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Nicole Wiesemann
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Herzberg
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Cornelia Große
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Interplay between Two-Component Regulatory Systems Is Involved in Control of Cupriavidus metallidurans Metal Resistance Genes. J Bacteriol 2023; 205:e0034322. [PMID: 36892288 PMCID: PMC10127602 DOI: 10.1128/jb.00343-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Metal resistance of Cupriavidus metallidurans is based on determinants that were acquired in the past by horizontal gene transfer during evolution. Some of these determinants encode transmembrane metal efflux systems. Expression of most of the respective genes is controlled by two-component regulatory systems composed of a membrane-bound sensor/sensory histidine kinase (HK) and a cytoplasmic, DNA-binding response regulator (RR). Here, we investigated the interplay between the three closely related two-component regulatory systems CzcRS, CzcR2S2, and AgrRS. All three systems regulate the response regulator CzcR, while the RRs AgrR and CzcR2 were not involved in czc regulation. Target promoters were czcNp and czcPp for genes upstream and downstream of the central czc gene region. The two systems together repressed CzcRS-dependent upregulation of czcP-lacZ at low zinc concentrations in the presence of CzcS but activated this signal transmission at higher zinc concentrations. AgrRS and CzcR2S2 interacted to quench CzcRS-mediated expression of czcNp-lacZ and czcPp-lacZ. Together, cross talk between the three two-component regulatory systems enhanced the capabilities of the Czc systems by controlling expression of the additional genes czcN and czcP. IMPORTANCE Bacteria are able to acquire genes encoding resistance to metals and antibiotics by horizontal gene transfer. To bestow an evolutionary advantage on their host cell, new genes must be expressed, and their expression should be regulated so that resistance-mediating proteins are produced only when needed. Newly acquired regulators may interfere with those already present in a host cell. Such an event was studied here in the metal-resistant bacterium Cupriavidus metallidurans. The results demonstrate how regulation by the acquired genes interacts with the host's extant regulatory network. This leads to emergence of a new system level of complexity that optimizes the response of the cell to periplasmic signals.
Collapse
|
10
|
Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. Microbiol Spectr 2022; 10:e0012122. [PMID: 35311568 PMCID: PMC9045368 DOI: 10.1128/spectrum.00121-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, −35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute—maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
11
|
Bennett MR, Jain A, Kovacs K, Hill PJ, Alexander C, Rawson FJ. Engineering bacteria to control electron transport altering the synthesis of non-native polymer. RSC Adv 2021; 12:451-457. [PMID: 35424487 PMCID: PMC8978702 DOI: 10.1039/d1ra06403g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The use of bacteria as catalysts for radical polymerisations of synthetic monomers has recently been established. However, the role of trans Plasma Membrane Electron Transport (tPMET) in modulating these processes is not well understood. We sort to study this by genetic engineering a part of the tPMET system NapC in E. coli. We show that this engineering altered the rate of extracellular electron transfer coincided with an effect on cell-mediated polymerisation using a model monomer. A plasmid with arabinose inducible PBAD promoters were shown to upregulate NapC protein upon induction at total arabinose concentrations of 0.0018% and 0.18%. These clones (E. coli (IP_0.0018%) and E. coli (IP_0.18%), respectively) were used in iron-mediated atom transfer radical polymerisation (Fe ATRP), affecting the nature of the polymerisation, than cultures containing suppressed or empty plasmids (E. coli (IP_S) and E. coli (E), respectively). These results lead to the hypothesis that EET (Extracellular Electron Transfer) in part modulates cell instructed polymerisations.
Collapse
Affiliation(s)
- Mechelle R Bennett
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Katalin Kovacs
- Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham University Park, Nottingham NG7 2RD UK
| | - Phil J Hill
- Division of Microbiology, Brewing and Biotechnology, School of Bioscience, University of Nottingham Sutton Bonington Campus Nottingham LE15 5RD UK
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, Boots Science Building, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
12
|
Loss of mobile genomic islands in metal resistant, hydrogen-oxidizing Cupriavidus metallidurans. Appl Environ Microbiol 2021; 88:e0204821. [PMID: 34910578 DOI: 10.1128/aem.02048-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the metal resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans strain CH34 contains horizontally acquired plasmids and genomic islands. Metal-resistance determinants on the two plasmids may exert genetic dominance over other related determinants. To investigate whether these recessive determinants can be activated in the absence of the dominant ones, the transcriptome of the highly zinc-sensitive deletion mutant Δe4 (ΔcadA ΔzntA ΔdmeF ΔfieF) of the plasmid-free parent AE104 was characterized using gene arrays. As a consequence of some unexpected results, close examination by PCR and genomic re-resequencing of strains CH34, AE104, Δe4 and others revealed that the genomic islands CMGIs 2, 3, 4, D, E, but no other islands or recessive determinants, were deleted in some of these strains. Provided CH34 wild type was kept under alternating zinc and nickel selection pressure, no comparable deletions occurred. All current data suggest that genes were actually deleted and were not, as previously surmised, simply absent from the respective strain. As a consequence, a cured database was compiled from the newly generated and previously published gene array data. Analysis of data from this database indicated that some genes of recessive, no longer needed determinants were nevertheless expressed and up-regulated. Their products may interact with those of the dominant determinants to mediate a mosaic phenotype. The ability to contribute to such a mosaic phenotype may prevent deletion of the recessive determinant. The data suggest that the bacterium actively modifies its genome to deal with metal stress and the same time ensures metal homeostasis. Significance In their natural environment, bacteria continually acquire genes by horizontal gene transfer and newly acquired determinants may become dominant over related ones already present in the host genome. When a bacterium is taken into laboratory culture, it is isolated from the horizontal gene transfer network. It can no longer gain genes, but instead may lose them. This was indeed observed in Cupriavidus metallidurans for loss key metal-resistance determinants when no selection pressure was continuously kept. However, some recessive metal-resistance determinants were maintained in the genome. It is proposed that they might contribute some accessory genes to related dominant resistance determinants, for instance periplasmic metal-binding proteins or two-component regulatory systems. Alternatively, they may only remain in the genome because their DNA serves as a scaffold for the nucleoid. Using C. metallidurans as an example, this study sheds light on the fate and function of horizontally acquired genes in bacteria.
Collapse
|
13
|
Behind the shield of Czc: ZntR controls expression of the gene for the zinc-exporting P-type ATPase ZntA in Cupriavidus metallidurans. J Bacteriol 2021; 203:JB.00052-21. [PMID: 33685972 PMCID: PMC8117531 DOI: 10.1128/jb.00052-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the metallophilic beta-proteobacterium Cupriavidus metallidurans, the plasmid-encoded Czc metal homeostasis system adjusts the periplasmic zinc, cobalt and cadmium concentration, which influences subsequent uptake of these metals into the cytoplasm. Behind this shield, the PIB2-type APTase ZntA is responsible for removal of surplus cytoplasmic zinc ions, thereby providing a second level of defense against toxic zinc concentrations. ZntA is the counterpart to the Zur-regulated zinc uptake system ZupT and other import systems; however, the regulator of zntA expression was unknown. The chromid-encoded zntA gene is adjacent to the genes czcI2C2B2', which are located on the complementary DNA strand and transcribed from a common promoter region. These genes encode homologs of plasmid pMOL30-encoded Czc components. Candidates for possible regulators of zntA were identified and subsequently tested: CzcI, CzcI2, and the MerR-type gene products of the locus tags Rmet_2302, Rmet_0102, Rmet_3456. This led to the identification of Rmet_3456 as ZntR, the main regulator of zntA expression. Moreover, both CzcIs decreased Czc-mediated metal resistance, possibly to avoid "over-excretion" of periplasmic zinc ions, which could result in zinc starvation due to diminished zinc uptake into the cytoplasm. Rmet_2302 was identified as CadR, the regulator of the cadA gene for an important cadmium-exporting PIB2-type ATPase, which provides another system for removal of cytoplasmic zinc and cadmium. Rmet_0102 was not involved in regulation of the metal resistance systems examined here. Thus, ZntR forms a complex regulatory network with CadR, Zur and the CzcIs. Moreover, these discriminating regulatory proteins assign the efflux systems to their particular function.ImportanceZinc is an essential metal for numerous organisms from humans to bacteria. The transportome of zinc uptake and efflux systems controls the overall cellular composition and zinc content in a double feed-back loop. Zinc starvation mediates, via the Zur regulator, an up-regulation of the zinc import capacity via the ZIP-type zinc importer ZupT and an amplification of zinc storage capacity, which together raise the cellular zinc content again. On the other hand, an increasing zinc content leads to ZntR-mediated up-regulation of the zinc efflux system ZntA, which decreases the zinc content. Together, the Zur regulon components and ZntR/ZntA balance the cellular zinc content under both high external zinc concentrations and zinc starvation conditions.
Collapse
|
14
|
Brinza L, Ahmed I, Cismasiu CM, Ardelean I, Breaban IG, Doroftei F, Ignatyev K, Moisescu C, Neamtu M. Geochemical investigations of noble metal-bearing ores: Synchrotron-based micro-analyses and microcosm bioleaching studies. CHEMOSPHERE 2021; 270:129388. [PMID: 33423005 DOI: 10.1016/j.chemosphere.2020.129388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Auriferous sulphide ores often incorporate micro-fine (or invisible) gold and silver particles in a manner making their extraction difficult. Nobel metals are lost in the tailings due to the refractory nature of these ores. Bioleaching is an environment-friendly alternative to the commonly used and toxic cyanidation protocols for gold extraction from refractory ores. In this paper, we investigate gold and silver bioleaching from porphyry and epithermal mineralisation systems, using iron-oxidizing bacteria Acidithiobacillus ferrooxidans. The invisible Au, sequestered in refractory ores, was characterised in situ by synchrotron micro X-Ray Fluorescence (SR-μ-XRF) and X-ray Absorption Spectroscopy (XAS), offering information on Au unaltered speciation at the atomistic level within the ore matrices and at a micro-scale spatial resolution. The SR-μ-XRF and XAS results showed that 10-20 μm sized elemental Au(0) nuggets are sequestered in pyrite, chalcopyrite, arsenopyrite matrices and at the interface of a mixture of pyrite and chalcopyrite. Moreover, the preliminary bioleaching experiments of the two types of ores, showed that Acidithiobacillus ferrooxidans can catalyse the dissolution of natural heterogeneous Fe-rich geo-matrices, sequestering Au and Ag and releasing particulate phases or partially solubilising them within 60 days. These results provide an understanding of noble metal sequestration and speciation within natural ores and a demonstration of the application of synchrotron-based micro-analysis in characterizing economic trace metals in major mineral structures. This work is a contribution to the ongoing efforts towards finding feasible and greener solutions of noble metal extraction protocols.
Collapse
Affiliation(s)
- Loredana Brinza
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Science Research Department, Lascar Catargi Str., No. 54, 700107, Iasi, Romania.
| | - Imad Ahmed
- University of Oxford, Department of Earth Sciences, South Parks Road, OX1 3AN, United Kingdom
| | - Carmen-Madalina Cismasiu
- Institute of Biology Bucharest, Romanian Academy, Department of Microbiology, Splaiul Independentei, No. 296, 060031, Bucharest, Romania
| | - Ioan Ardelean
- Institute of Biology Bucharest, Romanian Academy, Department of Microbiology, Splaiul Independentei, No. 296, 060031, Bucharest, Romania
| | - Iuliana Gabriela Breaban
- Alexandru Ioan Cuza University of Iasi, Faculty of Geography and Geology, Carol I Blvd, No 11, 700506, Iasi, Romania
| | - Florica Doroftei
- "Petru Poni" Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, Iasi, 700487, Romania
| | - Konstantin Ignatyev
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0AD, Oxfordshire, United Kingdom
| | - Cristina Moisescu
- Institute of Biology Bucharest, Romanian Academy, Department of Microbiology, Splaiul Independentei, No. 296, 060031, Bucharest, Romania
| | - Mariana Neamtu
- Alexandru Ioan Cuza University of Iasi, Institute of Interdisciplinary Research, Science Research Department, Lascar Catargi Str., No. 54, 700107, Iasi, Romania
| |
Collapse
|
15
|
Bleichert P, Bütof L, Rückert C, Herzberg M, Francisco R, Morais PV, Grass G, Kalinowski J, Nies DH. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces. Appl Environ Microbiol 2020; 87:e01788-20. [PMID: 33067196 PMCID: PMC7755237 DOI: 10.1128/aem.01788-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.
Collapse
Affiliation(s)
| | - Lucy Bütof
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | | | - Martin Herzberg
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | - Romeu Francisco
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula V Morais
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology, Bielefeld, Germany
| | - Dietrich H Nies
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| |
Collapse
|
16
|
Sanyal SK, Brugger J, Etschmann B, Pederson SM, Delport PWJ, Dixon R, Tearle R, Ludington A, Reith F, Shuster J. Metal resistant bacteria on gold particles: Implications of how anthropogenic contaminants could affect natural gold biogeochemical cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138698. [PMID: 32330727 DOI: 10.1016/j.scitotenv.2020.138698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Joël Brugger
- Monash University, Clayton, Victoria 3800, Australia
| | | | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Roger Dixon
- University of Pretoria, Pretoria 0001, South Africa
| | - Rick Tearle
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Davies Research Centre, School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia; CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
17
|
Sanyal SK, Reith F, Shuster J. A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. FEMS Microbiol Ecol 2020; 96:5851273. [DOI: 10.1093/femsec/fiaa111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
ABSTRACT
A bacterial consortium was enriched from gold particles that ‘experienced’ ca. 80 years of biotransformation within waste-rock piles (Australia). This bacterial consortium was exposed to 10 µM AuCl3 to obtain Au-tolerant bacteria. From these isolates, Serratia sp. and Stenotrophomonas sp. were the most Au-tolerant and reduced soluble Au as pure gold nanoparticles, indicating that passive mineralisation is a mechanism for mediating the toxic effect of soluble Au produced during particle dissolution. Genome-wide analysis demonstrated that these isolates also possessed various genes that could provide cellular defence enabling survival under heavy-metal stressed condition by mediating the toxicity of heavy metals through active efflux/reduction. Diverse metal-resistant genes or genes clusters (cop, cus, czc, zntand ars) were detected, which could confer resistance to soluble Au. Comparative genome analysis revealed that the majority of detected heavy-metal resistant genes were similar (i.e. orthologous) to those genes of Cupriavidus metallidurans CH34. The detection of heavy-metal resistance, nutrient cycling and biofilm formation genes (pgaABCD, bsmAandhmpS) may have indirect yet important roles when dealing with soluble Au during particle dissolution. In conclusion, the physiological and genomic results suggest that bacteria living on gold particles would likely use various genes to ensure survival during Au-biogeochemical cycling.
Collapse
Affiliation(s)
- Santonu Kumar Sanyal
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| | - Frank Reith
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| | - Jeremiah Shuster
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- CSIRO Land & Water, Environmental Contaminant Mitigation and Technologies, Gate 4 Waite Road, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
18
|
Mazhar SH, Herzberg M, Ben Fekih I, Zhang C, Bello SK, Li YP, Su J, Xu J, Feng R, Zhou S, Rensing C. Comparative Insights Into the Complete Genome Sequence of Highly Metal Resistant Cupriavidus metallidurans Strain BS1 Isolated From a Gold-Copper Mine. Front Microbiol 2020; 11:47. [PMID: 32117100 PMCID: PMC7019866 DOI: 10.3389/fmicb.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
The highly heavy metal resistant strain Cupriavidus metallidurans BS1 was isolated from the Zijin gold–copper mine in China. This was of particular interest since the extensively studied, closely related strain, C. metallidurans CH34 was shown to not be only highly heavy metal resistant but also able to reduce metal complexes and biomineralizing them into metallic nanoparticles including gold nanoparticles. After isolation, C. metallidurans BS1 was characterized and complete genome sequenced using PacBio and compared to CH34. Many heavy metal resistance determinants were identified and shown to have wide-ranging similarities to those of CH34. However, both BS1 and CH34 displayed extensive genome plasticity, probably responsible for significant differences between those strains. BS1 was shown to contain three prophages, not present in CH34, that appear intact and might be responsible for shifting major heavy metal resistance determinants from plasmid to chromid (CHR2) in C. metallidurans BS1. Surprisingly, the single plasmid – pBS1 (364.4 kbp) of BS1 contains only a single heavy metal resistance determinant, the czc determinant representing RND-type efflux system conferring resistance to cobalt, zinc and cadmium, shown here to be highly similar to that determinant located on pMOL30 in C. metallidurans CH34. However, in BS1 another homologous czc determinant was identified on the chromid, most similar to the czc determinant from pMOL30 in CH34. Other heavy metal resistance determinants such as cnr and chr determinants, located on megaplasmid pMOL28 in CH34, were shown to be adjacent to the czc determinant on chromid (CHR2) in BS1. Additionally, other heavy metal resistance determinants such as pbr, cop, sil, and ars were located on the chromid (CHR2) and not on pBS1 in BS1. A diverse range of genomic rearrangements occurred in this strain, isolated from a habitat of constant exposure to high concentrations of copper, gold and other heavy metals. In contrast, the megaplasmid in BS1 contains mostly genes encoding unknown functions, thus might be more of an evolutionary playground where useful genes could be acquired by horizontal gene transfer and possibly reshuffled to help C. metallidurans BS1 withstand the intense pressure of extreme concentrations of heavy metals in its environment.
Collapse
Affiliation(s)
- Sohaib H Mazhar
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suleiman Kehinde Bello
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junming Su
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junqiang Xu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Renwei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
19
|
Interplay between the Zur Regulon Components and Metal Resistance in Cupriavidus metallidurans. J Bacteriol 2019; 201:JB.00192-19. [PMID: 31109989 DOI: 10.1128/jb.00192-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 12/30/2022] Open
Abstract
The Zur regulon is central to zinc homeostasis in the zinc-resistant bacterium Cupriavidus metallidurans It comprises the transcription regulator Zur, the zinc importer ZupT, and three members of the COG0523 family of metal-chaperoning G3E-type GTPases, annotated as CobW1, CobW2, and CobW3. The operon structures of the zur and cobW1 loci were determined. To analyze the interplay between the Zur regulon components and metal resistance, deletion mutants were constructed from the wild-type strain CH34 and various other strains. The Zur regulon components interacted with the plasmid-encoded and chromosomally encoded metal resistance factors to acquire metals from complexes of EDTA and for homeostasis of and resistance to zinc, nickel, cobalt, and cadmium. The three G3E-type GTPases were characterized in more detail. CobW1 bound only 1 Zn atom per mol of protein with a stability constant slightly above that of 2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene (Zincon) and an additional 0.5 Zn with low affinity. The CobW1 system was necessary to obtain metals from EDTA complexes. The GTPase CobW2 is a zinc storage compound and bound 0.5 to 1.5 Zn atoms tightly and up to 6 more with lower affinity. The presence of MgGTP unfolded the protein partially. CobW3 had no GTPase activity and equilibrated metal import by ZupT with that of the other metal transport systems. It sequestered 8 Zn atoms per mol with decreasing affinity. The three CobWs bound to the metal-dependent protein FolEIB2, which is encoded directly downstream of cobW1 This demonstrated an important contribution of the Zur regulon components to metal homeostasis in C. metallidurans IMPORTANCE Zinc is an important transition metal cation and is present as an essential component in many enzymes, such as RNA polymerase. As with other transition metals, zinc is also toxic at higher concentrations so that living cells have to maintain strict control of their zinc homeostasis. Members of the COG0523 family of metal-chaperoning GE3-type GTPases exist in archaea, bacteria, and eucaryotes, including humans, and they may be involved in delivery of zinc to thousands of different proteins. We used a combination of molecular, physiological, and biochemical methods to demonstrate the important but diverse functions of COG0523 proteins in C. metallidurans, which are produced as part of the Zur-controlled zinc starvation response in this bacterium.
Collapse
|
20
|
Sanyal SK, Shuster J, Reith F. Biogeochemical gold cycling selects metal-resistant bacteria that promote gold particle transformation. FEMS Microbiol Ecol 2019; 95:5499019. [DOI: 10.1093/femsec/fiz078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/23/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Santonu Kumar Sanyal
- Department of Molecular & Biomedical Science, School of Biological Sciences,The University of Adelaide, Adelaide 5005, South Australia, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond 5064, South Australia, Australia
| | - Jeremiah Shuster
- Department of Molecular & Biomedical Science, School of Biological Sciences,The University of Adelaide, Adelaide 5005, South Australia, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond 5064, South Australia, Australia
| | - Frank Reith
- Department of Molecular & Biomedical Science, School of Biological Sciences,The University of Adelaide, Adelaide 5005, South Australia, Australia
- CSIRO Land and Water, Environmental Contaminant Mitigation and Technologies, PMB2, Glen Osmond 5064, South Australia, Australia
| |
Collapse
|
21
|
Große C, Poehlein A, Blank K, Schwarzenberger C, Schleuder G, Herzberg M, Nies DH. The third pillar of metal homeostasis inCupriavidus metalliduransCH34: preferences are controlled by extracytoplasmic function sigma factors. Metallomics 2019; 11:291-316. [DOI: 10.1039/c8mt00299a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
InC. metallidurans, a network of 11 extracytoplasmic function sigma factors forms the third pillar of metal homeostasis acting in addition to the metal transportome and metal repositories as the first and second pillar.
Collapse
Affiliation(s)
- Cornelia Große
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Anja Poehlein
- Göttingen Genomics Laboratory
- Georg-August-University Göttingen, Grisebachstr. 8
- 37077 Göttingen
- Germany
| | - Kathrin Blank
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Claudia Schwarzenberger
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Grit Schleuder
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Martin Herzberg
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| | - Dietrich H. Nies
- Molecular Microbiology
- Martin-Luther-University Halle-Wittenberg
- Kurt-Mothes-Str. 3
- 06099 Halle (Saale)
- Germany
| |
Collapse
|
22
|
Reflecting on Gold Geomicrobiology Research: Thoughts and Considerations for Future Endeavors. MINERALS 2018. [DOI: 10.3390/min8090401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Research in gold (Au) geomicrobiology has developed extensively over the last ten years, as more Au-bearing materials from around the world point towards a consistent story: That microbes interact with Au. In weathering environments, Au is mobile, taking the form of oxidized, soluble complexes or reduced, elemental Au nanoparticles. The transition of Au between aqueous and solid states is attributed to varying geochemical conditions, catalyzed in part by the biosphere. Hence, a global Au-biogeochemical-cycle was proposed. The primary focus of this mini-review is to reflect upon the biogeochemical processes that contribute to what we currently know about Au cycling. In general, the global Au-biogeochemical-cycle begins with the liberation of gold-silver particles from a primary host rock, by physical weathering. Through oxidative-complexation, inorganic and organic soluble-Au complexes are produced. However, in the presence of microbes or other reductants—e.g., clays and Fe-oxides—these Au complexes can be destabilized. The reduction of soluble Au ultimately leads to the bioprecipitation and biomineralization of Au, the product of which can aggregate into larger structures, thereby completing the Au cycle. Evidence of these processes have been “recorded” in the preservation of secondary Au structures that have been observed on Au particles from around the world. These structures—i.e., nanometer-size to micrometer-size Au dissolution and reprecipitation features—are “snap shots” of biogeochemical influences on Au, during its journey in Earth-surface environments. Therefore, microbes can have a profound effect on the occurrence of Au in natural environments, given the nutrients necessary for microbial metabolism are sustained and Au is in the system.
Collapse
|
23
|
Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities. FEMS Microbiol Ecol 2018; 94:4992300. [DOI: 10.1093/femsec/fiy080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
|
24
|
Bütof L, Wiesemann N, Herzberg M, Altzschner M, Holleitner A, Reith F, Nies DH. Synergistic gold–copper detoxification at the core of gold biomineralisation inCupriavidus metallidurans. Metallomics 2018; 10:278-286. [DOI: 10.1039/c7mt00312a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cupriavidus metalliduransescapes synergistic Cu/Au toxicity by re-oxidation of Au(i) back to Au(iii) using the periplasmic oxidase CopA.
Collapse
Affiliation(s)
- L. Bütof
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - N. Wiesemann
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Altzschner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - A. Holleitner
- Walter Schottky Institut and Physik-Department
- Technical University Munich
- Garching
- Germany
| | - F. Reith
- The University of Adelaide
- School of Biological Sciences
- Adelaide
- Australia
| | - D. H. Nies
- Molecular Microbiology, Institute for Biology/Microbiology
- Martin-Luther-University Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| |
Collapse
|