1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Sanz D, Díaz E. Genetic characterization of the cyclohexane carboxylate degradation pathway in the denitrifying bacterium Aromatoleum sp. CIB. Environ Microbiol 2022; 24:4987-5004. [PMID: 35768954 PMCID: PMC9795900 DOI: 10.1111/1462-2920.16093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
The alicyclic compound cyclohexane carboxylate (CHC) is anaerobically degraded through a peripheral pathway that converges with the central benzoyl-CoA degradation pathway of aromatic compounds in Rhodopseudomonas palustris (bad pathway) and some strictly anaerobic bacteria. Here we show that in denitrifying bacteria, e.g. Aromatoleum sp. CIB strain, CHC is degraded through a bad-ali pathway similar to that reported in R. palustris but that does not share common intermediates with the benzoyl-CoA degradation pathway (bzd pathway) of this bacterium. The bad-ali genes are also involved in the aerobic degradation of CHC in strain CIB, and orthologous bad-ali clusters have been identified in the genomes of a wide variety of bacteria. Expression of bad-ali genes in strain CIB is under control of the BadR transcriptional repressor, which was shown to recognize CHC-CoA, the first intermediate of the pathway, as effector, and whose operator region (CAAN4 TTG) was conserved in bad-ali clusters from Gram-negative bacteria. The bad-ali and bzd pathways generate pimelyl-CoA and 3-hydroxypimelyl-CoA, respectively, that are metabolized through a common aab pathway whose genetic determinants form a supraoperonic clustering with the bad-ali genes. A synthetic bad-ali-aab catabolic module was engineered and it was shown to confer CHC degradation abilities to different bacterial hosts.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
3
|
Rojo F. A new global regulator that facilitates the co-metabolization of polyaromatic hydrocarbons and other nutrients in Novosphingobium. Environ Microbiol 2021; 23:2875-2877. [PMID: 33887792 DOI: 10.1111/1462-2920.15527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
In an article in this issue of Environmental Microbiology, Segura et al. report the identification of an unusual global regulator in Novosphingobium sp. HR1a, a metabolically versatile bacterial strain isolated from the rhizosphere able to assimilate a wide range of polyaromatic hydrocarbons (PAHs). Physiological and transcriptomic assays suggest that this regulator, named PahT, activates the expression of genes involved in the assimilation of PAHs, and of compounds such as sugars and acetate, facilitating their co-metabolism. This effect is the opposite to the carbon catabolite repression strategy that allows metabolically versatile bacteria to favour the use of some compounds over others. PahT was found to stimulate sugar uptake and metabolization in the presence and absence of PAHs and to facilitate microaerobic respiration if PAHs were present. A survey of the genomes of several Sphingomonadaceae members showed that PahT is not present in all strains of this family, but that it is strongly associated with PAH degradation genes. Since not all PAH-degrading strains contain pahT, it seems that PahT is not essential for PAH degradation but likely provides a selective advantage to PAH-degrading strains in environments such as the rhizosphere where other potential carbon sources are available.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus UAM, Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
4
|
Sharma M, Khurana H, Singh DN, Negi RK. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111744. [PMID: 33280938 DOI: 10.1016/j.jenvman.2020.111744] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
The genus Sphingopyxis was first reported in the year 2001. Phylogenetically, Sphingopyxis is well delineated from other genera Sphingobium, Sphingomonas and Novosphingobium of sphingomonads group, family Sphingomonadaceae of Proteobacteria. To date (at the time of writing), the genus Sphingopyxis comprises of twenty validly published species available in List of Prokaryotic Names with Standing in Nomenclature. Sphingopyxis spp. have been isolated from diverse niches including, agricultural soil, marine and fresh water, caves, activated sludge, thermal spring, oil and pesticide contaminated soil, and heavy metal contaminated sites. Sphingopyxis species have drawn considerable attention not only for their ability to survive under extreme environments, but also for their potential to degrade number of xenobiotics and other environmental contaminants that impose serious threat to human health. At present, genome sequence of both cultivable and non-cultivable strains (metagenome assembled genome) are available in the public databases (NCBI) and genome wide studies confirms the presence of mobile genetic elements and plethora of degradation genes and pathways making them a potential candidate for bioremediation. Beside genome wide predictions there are number of experimental evidences confirm the degradation potential of bacteria belonging to genus Sphingopyxis and also the production of different secondary metabolites that help them interact and survive in their ecological niches. This review provides detailed information on ecology, general characteristic and the significant implications of Sphingopyxis species in environmental management along with the bio-synthetic potential.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Himani Khurana
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Durgesh Narain Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi-110007, India.
| |
Collapse
|
5
|
Identification of two fnr genes and characterisation of their role in the anaerobic switch in Sphingopyxis granuli strain TFA. Sci Rep 2020; 10:21019. [PMID: 33273546 PMCID: PMC7713065 DOI: 10.1038/s41598-020-77927-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Sphingopyxis granuli strain TFA is able to grow on the organic solvent tetralin as the only carbon and energy source. The aerobic catabolic pathway for tetralin, the genes involved and their regulation have been fully characterised. Unlike most of the bacteria belonging to the sphingomonads group, this strain is able to grow in anoxic conditions by respiring nitrate, though not nitrite, as the alternative electron acceptor. In this work, two fnr-like genes, fnrN and fixK, have been identified in strain TFA. Both genes are functional in E. coli and Sphingopyxis granuli although fixK, whose expression is apparently activated by FnrN, seems to be much less effective than fnrN in supporting anaerobic growth. Global transcriptomic analysis of a ΔfnrN ΔfixK double mutant and identification of Fnr boxes have defined a minimal Fnr regulon in this bacterium. However, expression of a substantial number of anaerobically regulated genes was not affected in the double mutant. Additional regulators such regBA, whose expression is also activated by Fnr, might also be involved in the anaerobic response. Anaerobically induced stress response genes were not regulated by Fnr but apparently induced by stress conditions inherent to anaerobic growth, probably due to accumulation of nitrite and nitric oxide.
Collapse
|
6
|
García-Romero I, Nogales J, Díaz E, Santero E, Floriano B. Understanding the metabolism of the tetralin degrader Sphingopyxis granuli strain TFA through genome-scale metabolic modelling. Sci Rep 2020; 10:8651. [PMID: 32457330 PMCID: PMC7250832 DOI: 10.1038/s41598-020-65258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
Sphingopyxis granuli strain TFA is an α-proteobacterium that belongs to the sphingomonads, a group of bacteria well-known for its degradative capabilities and oligotrophic metabolism. Strain TFA is the only bacterium in which the mineralisation of the aromatic pollutant tetralin has been completely characterized at biochemical, genetic, and regulatory levels and the first Sphingopyxis characterised as facultative anaerobe. Here we report additional metabolic features of this α-proteobacterium using metabolic modelling and the functional integration of genomic and transcriptomic data. The genome-scale metabolic model (GEM) of strain TFA, which has been manually curated, includes information on 743 genes, 1114 metabolites and 1397 reactions. This represents the largest metabolic model for a member of the Sphingomonadales order thus far. The predictive potential of this model was validated against experimentally calculated growth rates on different carbon sources and under different growth conditions, including both aerobic and anaerobic metabolisms. Moreover, new carbon and nitrogen sources were predicted and experimentally validated. The constructed metabolic model was used as a platform for the incorporation of transcriptomic data, generating a more robust and accurate model. In silico flux analysis under different metabolic scenarios highlighted the key role of the glyoxylate cycle in the central metabolism of strain TFA.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology. Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), 28040, Madrid, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain
| | - Belén Floriano
- Department of Molecular Biology and Biochemical Engineering. Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
7
|
Biodegradation of Tetralin: Genomics, Gene Function and Regulation. Genes (Basel) 2019; 10:genes10050339. [PMID: 31064110 PMCID: PMC6563040 DOI: 10.3390/genes10050339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
Tetralin (1,2,3,4-tetrahydonaphthalene) is a recalcitrant compound that consists of an aromatic and an alicyclic ring. It is found in crude oils, produced industrially from naphthalene or anthracene, and widely used as an organic solvent. Its toxicity is due to the alteration of biological membranes by its hydrophobic character and to the formation of toxic hydroperoxides. Two unrelated bacteria, Sphingopyxis granuli strain TFA and Rhodococcus sp. strain TFB were isolated from the same niche as able to grow on tetralin as the sole source of carbon and energy. In this review, we provide an overview of current knowledge on tetralin catabolism at biochemical, genetic and regulatory levels in both strains. Although they share the same biodegradation strategy and enzymatic activities, no evidences of horizontal gene transfer between both bacteria have been found. Moreover, the regulatory elements that control the expression of the gene clusters are completely different in each strain. A special consideration is given to the complex regulation discovered in TFA since three regulatory systems, one of them involving an unprecedented communication between the catabolic pathway and the regulatory elements, act together at transcriptional and posttranscriptional levels to optimize tetralin biodegradation gene expression to the environmental conditions.
Collapse
|
8
|
González-Flores YE, de Dios R, Reyes-Ramírez F, Santero E. The response of Sphingopyxis granuli strain TFA to the hostile anoxic condition. Sci Rep 2019; 9:6297. [PMID: 31000749 PMCID: PMC6472365 DOI: 10.1038/s41598-019-42768-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Sphingomonads comprises a group of interesting aerobic bacteria because of their ubiquity and metabolic capability of degrading many recalcitrant contaminants. The tetralin-degrader Sphingopyxis granuli strain TFA has been recently reported as able to anaerobically grow using nitrate as the alternative electron acceptor and so far is the only bacterium with this ability within the sphingomonads group. To understand how strain TFA thrives under anoxic conditions, a differential transcriptomic analysis while growing under aerobic or anoxic conditions was performed. This analysis has been validated and complemented with transcription kinetics of representative genes of different functional categories. Results show an extensive change of the expression pattern of this strain in the different conditions. Consistently, the most induced operon in anoxia codes for proteases, presumably required for extensive changes in the protein profile. Besides genes that respond to lack of oxygen in other bacteria, there are a number of genes that respond to stress or to damage of macromolecules, including genes of the SOS DNA-damage response, which suggest that anoxic conditions represent a hostile environment for this bacterium. Interestingly, growth under anoxic conditions also resulted in repression of all flagellar and type IV pilin genes, which suggested that this strain shaves its appendages off while growing in anaerobiosis.
Collapse
Affiliation(s)
- Yolanda Elisabet González-Flores
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Rubén de Dios
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain.
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo/CSIC/Universidad Pablo de Olavide/Junta de Andalucía. Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| |
Collapse
|
9
|
García-Romero I, Förstner KU, Santero E, Floriano B. SuhB, a small non-coding RNA involved in catabolite repression of tetralin degradation genes in Sphingopyxis granuli strain TFA. Environ Microbiol 2018; 20:3671-3683. [PMID: 30033661 DOI: 10.1111/1462-2920.14360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023]
Abstract
Global dRNA-seq analysis of transcription start sites combined with in silico annotation using Infernal software revealed the expression of 91 putative non-coding sRNA in Sphingopyxis granuli TFA cells grown on different carbon sources. Excluding housekeeping sRNAs, only one additional sRNA, which belongs to the Rfam SuhB family (RF00519), was detected by Infernal but with an incorrect size according to the experimental results. SuhB is highly conserved across the Sphingopyxis genus. Expression data revealed that SuhB is present in rapidly growing TFA cells. A suhB deletion mutant exhibited de-repression of tetralin degradation (thn) gene expression and higher amounts of their LysR-type activator, ThnR, under conditions of carbon catabolite repression (CCR). Interaction between SuhB and the 5'UTR of thnR mRNA was demonstrated in vitro. Moreover, co-immunoprecipitation experiments, combined with fluorescence measurements of gfp fusions to the 5'UTR of thnR mRNA and the phenotype of an hfq deletion mutant, suggest the involvement of Hfq in this interaction. Taken together, these data support an Hfq-mediated repressive role for SuhB, on ThnR mRNA translation that prevents thn gene induction. SuhB, which is a highly conserved sRNA in the Sphingopyxis genus, is the first identified element directly involved in CCR of thn gene expression in S. granuli strain TFA.
Collapse
Affiliation(s)
| | - Konrad U Förstner
- Research Center for Infectious Diseases (ZINF), University of Würzburg, 97080, Würzburg, Germany
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Floriano
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
10
|
Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters. Sci Rep 2016; 6:24538. [PMID: 27087658 PMCID: PMC4834489 DOI: 10.1038/srep24538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators.
Collapse
|
11
|
Ledesma-García L, Sánchez-Azqueta A, Medina M, Reyes-Ramírez F, Santero E. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes. Sci Rep 2016; 6:23848. [PMID: 27030382 PMCID: PMC4814904 DOI: 10.1038/srep23848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/09/2016] [Indexed: 11/21/2022] Open
Abstract
Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction.
Collapse
Affiliation(s)
- Laura Ledesma-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Ana Sánchez-Azqueta
- Departamento de Bioquímica y Biología Molecular y Celular, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Seville, Spain
| |
Collapse
|
12
|
García-Romero I, Pérez-Pulido AJ, González-Flores YE, Reyes-Ramírez F, Santero E, Floriano B. Genomic analysis of the nitrate-respiring Sphingopyxis granuli (formerly Sphingomonas macrogoltabida) strain TFA. BMC Genomics 2016; 17:93. [PMID: 26847793 PMCID: PMC4741004 DOI: 10.1186/s12864-016-2411-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/22/2016] [Indexed: 01/17/2023] Open
Abstract
Background Sphingomonads are Alphaproteobacteria that belong to the Sphingomonas, Novosphingobium, Sphingopyxis or Sphingobium genera, They are physiologically diverse and broadly distributed in nature, playing important roles in oligotrophic environments and in the degradation of recalcitrant polyaromatic compounds, Sphingopyxis is a poorly studied genus of which only one representative (S. alaskensis RB2256) has been deeply characterized. In this paper we analyze the genomic features of S. granuli strain TFA (formerly Sphingomonas macrogoltabida) in comparison with the available Sphingopyxis sequenced genomes, to describe common characteristics of this genus and to highlight unique characteristics of strain TFA. Results The TFA genome has been assembled in a single circular chromosome of 4.7 Mb. Genomic sequence analysis and proteome comparison re-assigned the TFA strain to the Sphingopyxis genus and the S. granuli species. Some regions of the TFA genome show high similarity (ca. 100 %) to other bacteria and several genomic islands have been detected. Pathways for aromatic compound degradation have been predicted but no growth of TFA has been detected using these as carbon or nitrogen sources. Genes for nitrate respiration have been identified as TFA exclusive. Experimental data on anaerobic growth of TFA using nitrate as a terminal electron acceptor are also provided. Conclusions Sphingopyxis representatives form a compact phylogenetic group (with the exception of S. baekryungensis DSM 16222) that share several characteristics, such as being naturally resistant to streptomycin, having only one ribosomal operon, a low number of prophages and CRISPR sequences, absence of selenoproteins and presence of ectoin and other biosynthesis pathways for secondary metabolites. Moreover, the TFA genome organization shows evidence of the presence of putative integrative and conjugative elements (ICE) responsible for the acquisition of several characteristics by horizontal transfer mechanisms. Sphingopyxis representatives have been described as strict aerobes but anaerobic growth using nitrate as a terminal electron acceptor might confer an environmental advantage to the first S. granuli strain characterized at genomic level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2411-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | | | - Francisca Reyes-Ramírez
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - Eduardo Santero
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - Belén Floriano
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
13
|
The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway. PLoS One 2013; 8:e73910. [PMID: 24069247 PMCID: PMC3771892 DOI: 10.1371/journal.pone.0073910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The genes for tetralin (thn) utilization in Sphingomonasmacrogolitabida strain TFA are regulated at the transcriptional level by ThnR, ThnY and ThnA3. ThnR, a LysR-type transcriptional activator activates transcription specifically in response to tetralin, and ThnY is an iron-sulfur flavoprotein that may activate ThnR by protein-protein interaction. ThnA3, a Rieske-type ferredoxin that transfers electrons to the tetralin dioxygenase, prevents transcription of thn genes when the inducer molecule of the pathway is a poor substrate for the dioxygenase. The mechanism by which ThnA3 transduces this signal to the regulatory system is a major question concerning thn gene regulation. Here, we have confirmed the discriminatory function of ThnA3 and the negative role of its reduced form. We have generated ThnY variants with amino acid exchanges in the [2Fe-2S], FAD and NAD(P) H binding domains and their regulatory properties have been analyzed. Two variants, ThnY-C40S and ThnY-N201G,S206P have completely lost the discriminatory function of the regulatory system because they induced thn gene expression with different molecules such us cis-decalin, cyclohexane, trans-decalin, or benzene, which are not real inducers of the pathway. These results support a model in which ThnA3 exerts its negative modulation via the regulator ThnY.
Collapse
|
14
|
Heterologous viral expression systems in fosmid vectors increase the functional analysis potential of metagenomic libraries. Sci Rep 2013; 3:1107. [PMID: 23346364 PMCID: PMC3551230 DOI: 10.1038/srep01107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/08/2013] [Indexed: 01/26/2023] Open
Abstract
The extraordinary potential of metagenomic functional analyses to identify activities of interest present in uncultured microorganisms has been limited by reduced gene expression in surrogate hosts. We have developed vectors and specialized E. coli strains as improved metagenomic DNA heterologous expression systems, taking advantage of viral components that prevent transcription termination at metagenomic terminators. One of the systems uses the phage T7 RNA-polymerase to drive metagenomic gene expression, while the other approach uses the lambda phage transcription anti-termination protein N to limit transcription termination. A metagenomic library was constructed and functionally screened to identify genes conferring carbenicillin resistance to E. coli. The use of these enhanced expression systems resulted in a 6-fold increase in the frequency of carbenicillin resistant clones. Subcloning and sequence analysis showed that, besides β-lactamases, efflux pumps are not only able contribute to carbenicillin resistance but may in fact be sufficient by themselves to convey carbenicillin resistance.
Collapse
|
15
|
García LL, Rivas-Marín E, Floriano B, Bernhardt R, Ewen KM, Reyes-Ramírez F, Santero E. ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression. J Biol Chem 2010; 286:1709-18. [PMID: 21068394 DOI: 10.1074/jbc.m110.184648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous genetic studies in Sphingomonas macrogolitabida strain TFA have established that expression of genes involved in tetralin biodegradation (thn genes) requires the function of the LysR type activator ThnR and also ThnY. Sequence comparison indicated that ThnY is homologous to bacterial oxygenase-coupled NAD(P)H-dependent ferredoxin reductases. However, ThnY showed substitutions in highly conserved positions of the pyridine nucleotide binding domain of these ferredoxin reductases. ThnY expression is co-regulated with all other genes required for tetralin biodegradation, and presumably thnY is part of the thnCA3A4RY operon. ThnY has been purified, and its biochemical and functional properties were characterized. ThnY was found to be a monomeric orange-brown iron-sulfur flavoprotein (estimated mass of 37,000 Da) containing one non-covalently attached flavin adenine dinucleotide and one plant type ferredoxin 2Fe-2S cluster. It can be efficiently reduced by dithionite, but reduction by pyridine nucleotides was very poor. Consistently, ThnY-dependent reduction of cytochrome c, ferricyanide, or 2,6-dichlorophenolindophenol using NAD(P)H as the electron donor was undetectable or very weak. The addition of ThnY to electrophoretic mobility shift assays containing ThnR and a probe bearing two thn divergent promoters resulted in a 3-fold increase in protein-DNA complex formation affinity, which indicates that ThnY directly promotes thn transcription activation by ThnR.
Collapse
Affiliation(s)
- Laura Ledesma García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide, Carretera de Utrera Km. 1, 41013 Seville, Spain
| | | | | | | | | | | | | |
Collapse
|