1
|
Wang H, Yu C, Sun Y, Cui N, Zhong B, Peng B, Hu M, Li J, Tu Z. Characterization of key off-odor compounds in grass carp cube formed during room temperature storage by molecular sensory science approach. Food Chem X 2024; 24:102011. [PMID: 39717407 PMCID: PMC11664276 DOI: 10.1016/j.fochx.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 12/25/2024] Open
Abstract
Flavor is a significant factor in determining the popularity of freshwater fish. However, freshwater fish can easily spoil during storage, producing an unpleasant odor. Little research has determined the changes in key off-odor compounds (OOCs) in freshwater fish during storage. In this study, quantitation and odor activity value (OAV) calculations revealed that 19 odorants were important volatile odor compounds in fresh, spoilage, and serious spoilage GCC. Recombination and omission experiments verified that (E)-2-hexenal, acetoin, N,N-dimethyl-benzenamine, trimethylamine (TMA), and ammonia were the key OOCs in spoilage GCC. Additional key OOCs in serious spoilage GCC were cyclohexane isothiocyanato, butylated hydroxytoluene, putrescine, cadaverine and histamine compared to those of spoilage GCC. Correlation analysis showed that 12 amino acids and 10 fatty acids played important roles in the formation of key OOCs. This study provides a theoretical basis for a comprehensive understanding of the formation of key OOCs in GCC during room temperature storage.
Collapse
Affiliation(s)
- Hao Wang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chengwei Yu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yanan Sun
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ning Cui
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Bizhen Zhong
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Bin Peng
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingming Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jinlin Li
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zongcai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering, School of Health & College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
2
|
Ma J, Nie Y, Zhang L, Xu Y. The evolutionary mechanism and function analysis of two subgroups of histamine-producing and non-histamine-producing Tetragenococcus halophilus. Food Res Int 2024; 176:113744. [PMID: 38163696 DOI: 10.1016/j.foodres.2023.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Tetragenococcus halophilus is a halophilic bacterium that existed in the fermentation of soy sauce and miso for flavor production and probiotic benefits. However, it is composed of two subgroups, histamine-producing and non-histamine-producing, with the former causing histamine accumulation and offering risks to food safety. Exploring the evolutionary mechanisms and physiological function of histamine-biosynthesis is of significance for understanding the formative mechanism of T. halophilus's strain-specificity and is helpful for microbial control. Using systematic genomic analysis, we found that plasmid acquisition and loss is the evolutionary form resulting in the two subgroups of T. halophilus. Two plasmids, plasmid α with 30 kb and plasmid β with 4 kb existed in histamine-producing T. halophilus. We investigated the whole genetic information and proposed their genetic function in both two plasmids. The acquisition of histamine-producing plasmid enhanced the acid tolerance of histamine-producing T. halophilus but did not affect salt tolerance. More interestingly, we found that the existence of plasmid will promote the co-culture growth of T. halophilus. This study deepens our understanding of the formative mechanism of microbial species diversity, and provides our knowledge of the physiological function of histamine-producing plasmids.
Collapse
Affiliation(s)
- Jinjin Ma
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lijie Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|